[1] T. Abdeljawad, On confermable fractional calculus, J. Comput. Appl. Math. 279 (2015) 57–66.
[2] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335(2) (2007) 1294–1308.
[3] M. Avci, H. Kavurmaci and M. E. Ozdemir, New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput. 217 (2011) 5171—5176.
[4] G. Farid, A Treatment of the Hadamard inequality due to m-convexity via generalized fractional integral, J. Fract. Calc. Appl. 9(1) (2018) 8–14.
[5] G. Farid, Hadamard and Fej´er-Hadamard inequalities for generalized fractional integral involving special functions, Konuralp J. Math. 4(1) (2016) 108–113.
[6] G. Farid, A. Ur. Rehman and S. Mehmood, Hadamard and Fej´er-Hadamard type integral inequalities for harmonically convex functions via an extended generalized Mittag-Leffler function, J. Math. Comput. Sci. 8(5) (2018) 630–64.
[7] Z. B. Fang and R. Shi, On the (p, h)-convex function and some integral inequalities, J. Inequal. Appl. 2014 (2014) p. 45.
[8] J. Hadamard, Etude sur les propri´et´es des fonctions enti`eres et en particulier d’une fonction consid´er´ee par ´ Riemann, J. Math. Pures Appl. (1893) 171–215.
[9] Ch. Hermite, Sur deux limites d’une in´tegrale ´denie, Mathesis 3 (1883) 82.
[10] F. Jarad, E. Ugurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Adv. Difference Equ. 2017 (2017).
[11] S. M. Kang, G. Farid, W. Nazeer and S. Mehmood, (h, m)-convex functions and associated fractional Hadamard and Fej´er-Hadamard inequalities via an extended generalized Mittag-Leffler function, J. Inequal. Appl. 2019 (2019) p. 78.
[12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential equations, Elsevier Science B. V., Amsterdam, 2006.
[13] S. Mehmood, G. Farid, K. A. Khan and M. Yussouf, New fractional Hadamard and Fej´er-Hadamard inequalities associated with exponentially (h, m)-convex functions, Eng. Appl. Sci. Lett. 3(2) (2020) 9–18.
[14] S. Mehmood, G. Farid, K. A. Khan and M. Yussouf, New Hadamard and Fej´er-Hadamard fractional inequalities for exponentially m-convex function, Eng. Appl. Sci. Lett. 3(1) (2020) 45–55.
[15] N. Mehreen and M. Anwar, Hermite-Hadamard type inequalities via exponentially (p, h)-convex functions. IEEE Access, 8 (2020) 37589–37595
[16] N. Mehreen and M. Anwar, Hermite-Hadamard and Hermite-Hadamard-Fej´er type inequalities for p-convex functions via conformable fractional integrals, J. Inequal. Appl. 2020 (2020) p. 107.
[17] N. Mehreen and M. Anwar, Hermite-Hadamard and Hermite-Hadamard-Fej´er type inequalities for p-convex functions via new fractional conformable integral operators, J. Math. Compt. Sci. 19 (2019) 230–240.
[18] N. Mehreen and M. Anwar, Hermite-Hadamard type inequalities via exponentially p-convex functions and exponentially s-convex functions in second sense with applications, J. Inequal. Appl. 2019 (2019), p. 92.
[19] N. Mehreen and M. Anwar, Integral inequalities for some convex functions via generalized fractional integrals, J. Inequal. Appl. 2018 (2018) p. 208.
[20] N. Mehreen and M. Anwar, Some inequalities via ψ-Riemann-Liouville fractional integrals, AIMS Math. 4(5) (2019) 1403–1415.
[21] N. Mehreen and M. Anwar, On some Hermite-Hadamard type inequalities for tgs-convex functions via generalized fractional integrals, Adv. Differnce Equ. 2020 (2020) p. 6.
[22] I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat. 43(6) (2014) 935–942.
[23] E. Set, M. Z. Sarikaya, A. G¨ozpnar, Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, preprint, 26 (2016) 221–229.
[24] M. Tunc, E. Gov, U. S¸anal, On tgs-convex function and their inequalities, Facta Univ. Ser. Math. Inf. 30(5) (2015) 679–691.
[25] S. Ullah, G. Farid , K. A. Khan, A. Waheed and S. Mehmood, Generalized fractional inequalities for quasi-convex functions, Adv. Difference Equ. 2019 (2019) p. 15.
[26] K. S. Zhang and J. P. Wan, p-convex functions and their properties, Pure Appl. Math. 23(1) (2007) 130–133.