[1] R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl. 276 (2002) 589–597.
[2] R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006) 167–1731.
[3] D.G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949) 385–397.
[4] J. Brzd¸ek and A Fo˘sner, Remarks on the stability of Lie homomorphisms, J. Math. Anal. Appl. 400 (2013) 585–596.
[5] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford, New York, 2000.
[6] M. Eshaghi and M. Filali, Arens regularity of module actions, Studia Math. 181 (2007) 237–254.
[7] M. Eshaghi Gordji and M. S. Moslehian, A trick for investigation of approximate derivations, Math. Commun. 15 (2010) 99–105.
[8] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
[9] R. V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press, New York, 1983.
[10] T. Miura, G. Hirasawa and S. E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319 (2006) 522–530.
[11] J. R. Ringrose, Automatic continuity of derivations of operator algebras, J. Lond. Math. Soc. 5 (1972) 432–438.