A graph associated to proper non-small subsemimodules of a semimodule

Document Type : Research Paper

Author

Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Abstract

Let M be a unitary left R-semimodule where R is a commutative semiring with identity. The  small intersection graph G(M) of a semimodule M is an undirected simple graph with all non-small proper subsemimodules of M as vertices and two distinct vertices N and L are adjacent if  and only if N ∩ L is not small in M. In this paper, we investigate the fundamental properties  of these graphs to relate the combinatorial properties of G(M) to the algebraic properties of the  R-semimodule M. Determine the diameter and the girth of G(M). Moreover, we study cut vertex,  clique number, domination number and independence number of the graph G(M). It is shown that the independence number of small graph is equal to the number of its maximal subsemimodules.

Keywords

[1] S. Akbari, H. Tavallaee, and Gh. S. Khalashi, Intersection Graph of Submodules of a Module, J. of Algebra Appl., 11 (1) (2012) 1250019, 8 pp.
[2] A. H. Alwan and A. M. Alhossaini, On dense subsemimodules and prime semimodules, Iraqi Journal of Science, 61(6) (2020) 1446–1455.
[3] A. H. Alwan and A. M. Alhossaini, Dedekind multiplication semimodules, Iraqi Journal of Science, 61(6) (2020) 1488–1497.
[4] A. H. Alwan, Maximal ideal graph of commutative semirings, International Journal of Nonlinear Analysis and Applications, 12(1) (2021) 913–926.
[5] A. H. Alwan, Maximal submodule graph of a module, Journal of Discrete Mathematical Sciences and Cryptography, accepted to appear.
[6] I. Beck, Coloring of Commutative ring, J. Algebra, 116(1) (1988) 208–226.
[7] J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, 244, Springer, New York, 2008.
[8] J. Bosak, The graphs of semigroups, in Theory of Graphs and its Applications, Academic Press, New York, 1964.
[9] I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009) 5381–5392.
[10] D. Dolˇzan and P. Oblak, The zero-divisor graphs of rings and semirings, Internat. J. Algebra Comput. 22(4) (2012) 1250033, 20 pp.
[11] S. Ebrahimi Atani, S. Dolati Pish Hesari and M. Khoramdel, A graph associated to proper non-small ideals of a commutative ring, Comment. Math. Univ. Carolin, 58(1) (2017) 1–12.
[12] J. S. Golan, Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, 1999.
[13] S. H. Jafari, and N. Jafari Rad, Domination in the intersection graphs of rings and modules, Ital. J. Pure Appl. Math. 28 (2011) 17–20.
[14] F. Kasch, Modules and Rings, Academic Press, London, 1982.
[15] Y. Katsov, T. G. Nam, and N. X. Tuyen, On Subtractive Semisimple Semirings, Algebra Colloq. 16(3) (2009) 415–426.
[16] T. Y. Lam, A First Course in Non-commutative Rings, Graduate Texts in Mathematics, 131, Springer, BerlinHeidelberg New York, 1991.
[17] O. Ore, Theory of Graphs, American Mathematical Society Colloquium Publications, Vol. 38, American Mathematical Society, Providence, RI, 1962.
[18] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991.
[19] E. Yaraneri, Intersection graph of a module, J. Algebra Appl., 12(5) (2013) 1250218, 30 pp.
Volume 12, Issue 2
November 2021
Pages 499-509
  • Receive Date: 05 March 2021
  • Revise Date: 24 April 2021
  • Accept Date: 10 May 2021