[1] A. Aghajani and K. Nourouzi, Convex sets in probabilistic normed spaces, Chaos, Sol. Frac. 36 (2008) 322–328.
[2] S.S. Chang, Y.J. Cho and S.M. Kang, Nonlinear Operator Theory in Probabilistic Metric Space, Nova Science Publishers, New York, 2001.
[3] Y.J. Cho, S. Sedghi and N. Shobe, Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces, Chaos, Sol. Frac. (2009) 2233–2244
[4] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994) 395–399.
[5] A. George and P. Veeramani, On some results ofanalysis for fuzzy metric spaces, Fuzzy Sets Syst. 90 (1997) 365–368.
[6] V. Gregori and A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets Syst. 125 (2002) 245–252.
[7] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 27 (1988) 385–389.
[8] O. HadĖzi´c and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Klumer Academic Publishers, 2001.
[9] X.-Q. Hu, M.-X. Zheng, B. Damjanovi’c and X.-F. Shao, Common coupled fixed point theorems for weakly compatible mappings in fuzzy metric spaces, Fixed Point Theory Appl. 2013, 2013:220.
[10] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984) 215–229.
[11] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975) 336–344.
[12] S.A. Mohiuddine and A. Alotaibi, Coupled coincidence point theorems for cCompatible mappings in partially ordered intuitionistic generalized fuzzy metric spaces, Fixed Point Theory Appl. 2013, 2013:220.
[13] Z. Qiu and S. Hong, Coupled fixed points for multivalued mappings in fuzzy metric spaces, Fixed Point Theory and Applications 2013, 2013:265.
[14] A.P. Robertson and W. Robertson, Topological Vector Spaces, Cambrisge University Press, 1964.
[15] B. Schweizer and A. Sklar, Statistical Metric Spaces, Pacific J. Math. 10 (1960) 313–334.
[16] B. Schweizer, A. Sklar and E. Thorp, The metrization of statistical metric spaces, Pacific J. Math. 10 (1960) 673–675.
[17] B. Schweizer and A. Sklar, Triangle inequalities in a class of statistical metric spaces, J. London Math. Soc. 38 (1963) 401–406.
[18] V.M. Sehgal and A.T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces, Math. Syst. Theory 6 (1972) 97–102.
[19] H.-C. Wu, Hausdorff topology induced by the fuzzy metric and the fixed point theorems in fuzzy metric spaces, J. Korean Math. Soc. 52 (2015) 1287–1303.