[1] A. Alzaatreh, C. Lee and F. Famoye, A new method for generating families of continuous distributions , Metron. 71(1) (2013) 63–79.
[2] G. R. Aryal and C. P. Tsokos, Transmuted Weibull distribution: A generalization of the Weibull probability distribution, European J. Pure Appl. Math. 4(2) (2011) 89–102.
[3] S.H. Bhatti, S. Hussain, T. Ahmad, M. Aslam, M. Aftab and M.A. Raza, Efficient estimation of Pareto model: Some modified percentile estimators, PLoS ONE 13(5) (2018).
[4] G.M. Cordeiroa and M. Castro, A new family of generalized distributions, J. Stat. Comput. Sim. (2010) 1563–5163.
[5] G.W. Cran, Moment estimators for the 3-parameter Weibull distribution, IEEE Trans. Rel. 37(4) (1988).
[6] S.D. Dubey, Some percentile estimators for Weibull parameters, Techno. 9 (1967) 119–129.
[7] D. A. Gupta, Asymptotic Theory of Statistics and Probability, Science Business Media, LLC, 2008.
[8] M. Elgarhy, M.A.U. Haq and Q.U. Ain, Exponentiated generalized Kumaraswamy distribution with applications, Ann. Data Sci. 5(2) (2018) 273–292.
[9] M. M. Hasan, B. F. W. Croke, S. Liu, K. Shimizu and F. Karim, Using mixed probability distribution functions for modeling non-zero sub-daily rainfall in Australia, Ann. Data Sci. Geos. 10 (43) (2020).
[10] S. Hashmi, M. A. U.Haq and R.M. Usman, A generalized exponential distribution with increasing, decreasing and constant shape hazard curves, Elec. J. Appl. Stat. Analy. 12(1) (2019) 223–244.
[11] M.A.U. Haq, M. Elgarhy, S. Hashmi, G. Ozel and Q.U. Ain, Transmuted Weibull power function distribution: its properties and applications, J. Data Sci. 397 (2018) 418.
[12] I.R. James, Estimation of the mixing proportion in a mixture of two normal distributions from simple, rapid measurements, Biomet. 34(2) (1978) 265–275.
[13] M. C. Jones, Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages, Stat. Meth. 6 (2009) 70–81.
[14] P. Kumaraswamy, Generalized probability density-function for double- bounded random processes, J. Hydro. 46 (1980) 79–88.
[15] J. Kennedy J and R. Eberhart, Particle swarm optimization, Int. Conf. Neural Networks; Australia: Perth; 1995. 1942–1948.
[16] A.J. Lemontea, W.B. Souzaa and G. M. Cordeirob, The exponentiated Kumaraswamy distribution and its logtransform, Brazilian J. Prob. Stat. 27(1) (2013) 31–53.
[17] Y.M. Mehmet Yilmaz and B. Buyum, Parameter estimation methods for two-component mixed exponential distributions, J. Turkish Stat. Assoc. 8(3) (2015) 51–59.
[18] Y.A. Mohammed, B. Yatim and S. Ismail, A parametric mixture model of three different distributions: An approach to analyze heterogeneous survival data, AIP Conf. Proc. 1605, 1040; (2014).
[19] M.J. Mohammed and A.T. Mohammed, Parameter estimation of inverse exponential Rayleigh distribution based on classical methods, Int. J. Nonlinear Anal. Appl. 12(1) (2021) 935–944 .
[20] S. Nadarajah, and S. Kotz, Moments of some J-shaped distribution, J. Appl. Stat. 30 (2003) 311–317.
[21] A. M. Nigm, E. K. AL-Hussaini, and Z. F. Jaheen, Bayesian one- sample prediction of future observations under Pareto distribution, Stat. 37(6) (2003) 527–536.
[22] R. Silva, F. Gomes-Silva, M. Ramos, G. Cordeiro, P. Marinho and T.A.N. De Andrade , The exponentiated Kumaraswamy-G class: general properties and application, Revista Colombiana Estad. 42(1) (2019) 1–33.
[23] R. B. Silva, M. Bourguignon, C.R.B. Dias and G.M. Cordeiro, The compound class of extended Weibull power series distributions, Comput. Stat. Data Anal. 58 (2013) 352–367.
[24] W. Szulczewski and W. Jakubowski, The application of mixture distribution for the estimation of extreme floods in controlled catchment basins, Water Resource Manag. 32 (2018) 3519–3534.
[25] C.W. Topp and F.C. Leone, A Family of J-shaped frequency functions , J. Amer. Stat. Assoc. 50 (1955) 209–219.
[26] R.A. Zeineldin, M. Ahsan Ul Haq, S. Hashmi and M. Elsehety, Alpha power transformed inverse Lomax distribution with different methods of estimation and applications, Complexity. 2020 Article ID (1860813) (2020).
[27] X. Zhai, J. Wang and J. Chen, Parameter estimation method of mixture distribution for construction machinery, Math. Prob. Engin. 2018, Article ID 3124048 (2018).
[28] G. Q. Zhang, Parameters estimation of three mixed exponential distributions, Int. Conf. Elect. Autom. Mech. Engin. (EAME 2015).