[1] E. Ahmed and A. Elgazzar, On fractional-order differential equations model for nonlocal epidemics, Physica A. 379 (2007) 607–614.
[2] E. Ahmed, A. El-Sayed and H.A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl. 325 (2007) 542–553.
[3] R. Barbosa, J.A. Tenreiro Machado, B.M. Vinagre and A.J. Calderon, Analysis of the Van der Pol oscillator containing derivatives of fractional-order, J. Vib. Control, 13 (2007) 1291–1301.
[4] D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert, The fractional-order governing equation of L´evy motion, Water. res. 36 (2000) 1413–1423.
[5] N. Biranvand and A. Salari, Energy estimate for impulsive fractional advection dispersion equations in anomalous diffusions, J. Nonlinear Funct. Anal. 2018 (2018) Article ID 30.[6] B. Carmichael, H. Babahosseini, SN Mahmoodi and M. Agah, The fractional viscoelastic response of human breast tissue cells, Phys. Biol. 12 (2015) 1–14 .
[7] W.C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos, Solitons and Fractals, 36 (2008) 1305–1314.
[8] J.H. Chen and W.C. Chen, Chaotic dynamics of the fractionally damped van der Pol equation, Chaos, Solitons and Fractals, 35 (2008) 188-198.
[9] V. Daftardar-Gejji and S. Bhalekar, Chaos in fractional-ordered Liu system, Comput. Math. Appl. 59 (2010) 1117–1127.
[10] M. Dalir and M. Bashour, Applications of fractional calculus, App. Math. Sci. 21 (2010) 1021–1032.
[11] M. Das, A. Maiti and G. Samanta, Stability analysis of a predator-prey fractional-order model incorporating prey refuge, Ecol. Genet. Genom. 7 (2018) 33–46.
[12] W. Deng and C. Li, Chaos synchronization of the fractional L¨u system, Physica A, 353 (2005) 61–72.
[13] K. Diethelm, N.J. Ford and A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn. 29 (2002) 3–22.
[14] L. Edelstein-Keshet, Mathematical models in biology, SIAM, 1988.
[15] S. Elaydi and A.-A. Yakubu, Global Stability of Cycles: Lotka-Volterra Competition Model With Stocking, J. Differ. Equ. Appl. 8 (2002) 537–549.
[16] A.A. Elsadany, A.E. Matouk, A.G. Abdelwahab and H.S. Abdallah, Dynamical analysis, linear feedback control and synchronization of a generalized Lotka-Volterra system, Int. J. Dyn. Control, 6 (2018) 328–338.
[17] A. Elsadany and A. Matouk, Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and itsdiscretization, J. Appl. Math. Comput. 49 (2015) 269–283.
[18] A. El-Sayed, A. El-Mesiry and H. El-Saka, On the fractional-order logistic equation, Appl. Math. Lett. 20 (2007) 817–823.
[19] X. Fu, P. Zhang and J. Zhang, Forecasting and Analyzing Internet Users of China with Lotka-Volterra Model, Asia Pac. J. Oper. Res. 34 (2017) 1–18.
[20] Z.M. Ge and C.Y. Ou, Chaos in a fractional-order modified Duffing system, Chaos, Solitons and Fractals, 34 (2007) 262–291.
[21] I. Grigorenko and E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett. 91 (2003) 34–101.
[22] D. Jana, Chaotic dynamics of a discrete predator-prey system with prey refugem, J. Comput. Appl. Math. 224 (2013) 848–865.
[23] L. Jun-Guo, Chaotic dynamics and synchronization of fractional-order Genesio-Tesi systems, Chin. Phys. Lett. 14 (2005) 1517–1522.
[24] M. Jun-hai and C. Yu-shu, Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (II), J. Appl. Math. Mech. 22 (2001) 1375–1382.
[25] R.Khoshsiar Ghaziani, J.Alidousti and A. Bayati, Eshkaftakib Stability and dynamics of a fractional-order LeslieGower prey-predator model Author links open overlay panel, Appl. Math. Modelling, 40(3) (2016) 2075-2086.
[26] G. Kotalczyk and F. Kruis, Fractional Monte Carlo time steps for the simulation of coagulation for parallelized flowsheet simulations, Chem. Eng. Res. Des. 136 (2018) 71–82.
[27] A. Matouk, Dynamical behaviors, linear feedback control and synchronization of the fractional-order Liu system, J. Nonlinear Syst. Appl. 1 (2010) 135–140.
[28] A. Matouk, Dynamical analysis, feedback control and synchronization of Liu dynamical system, Nonlinear AbalTheor. 69 (2008) 3213–3224.
[29] R.L. Magin, Fractional calculus in bioengineering, Begell House, 2006.
[30] F. Pitolli, A Fractional B-spline Collocation Method for the Numerical Solution of Fractional predator-prey Models, Fract. Fractional, 2 (2018) 1–16.
[31] L. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 1998.
[32] I. Petras, Fractional order nonlinear systems: modeling, analysis and simulation, Springer Science and Business Media, 2011.
[33] I. Petr´as, A note on the fractional-order Volta’s system, Commun. Nonlinear Sci. 15 (2010) 384-393.
[34] I. Petr´as, Chaos in the fractional-order Volta’s system: modeling and simulation. Nonlinear Dyn. 57 (2009) 157–170.
[35] M. Rahmani Doust, S. Gholizadeh, The Lotka-Volterra predator-prey Equations, CJMS, 3 (2014) 221–225.
[36] L.J. Sheua, H.K. Chen, J.H. Chen, L.M.Tam, W.C. Chen, K.T. Line and Y. Kang, Chaos in the Newton-Leipnik system with fractional-order, Chaos, Solitons and Fractals, 36 (2008) 98–103.
[37] N. Samardzija and L.D. Greller, Explosive route to chaos through a fractal torus in a generalized Lotka-Volterra model. Bull. Math. Biol. 50 (1988) 465–491.
[38] R. Satriyantara, A. Suryanto and N. Hidayat, Numerical Solution of a Fractional-Order predator-prey Model with Prey Refuge and Additional Food for Predator, J. Exp. Biol. 8 (2018) 66–70.
[39] N.T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, J. Comput. Appl. Math. 131 (2002) 517-529.
[40] S. Vaidyanathan, Lotka-Volterra population biology models with negative feedback and their ecological monitoring, Int. J. PharmTech Res. 8 (2015) 974–981.
[41] S. Vaidyanathan, Adaptive biological control of generalized Lotka-Volterra three-species biological system, Int. J. Pharmtech Res. 8 (2015) 622–631.
[42] T. Zhou, Y. Tang and G. Chen, Chen’s attractor exists. Int. J. Bif. Chaos, 14 (2004) 3167–3177.