[1] H. A. Abass, F. U. Ogbuisi and O. T. Mewomo, Common solution of split equilibrium problem with no prior knowledge of operator norm, U. P. B Sci. Bull., Series A. 80(1) (2018) 175–190.
[2] H. A. Abass, C. Izuchukwu, O. T. Mewomo and Q. L. Dong, Strong convergence of an inertial forward-backward splitting method for accretive operators in real Banach space, Fixed Point Theory, 21(2) (2020) 397–412.
[3] H. A. Abass, K. O. Aremu, L. O. Jolaoso and O.T. Mewomo, An inertial forward-backward splitting method for approximating solutions of certain optimization problem, J. Nonlinear Funct. Anal. 2020 (2020), Article ID 6.
[4] Y.I. Alber, Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications in: Kartsatos, A.G (Ed). Theory and Applications of Nonlinear Operators and Accretive and Monotone Type, Lecture Notes in Pure and Applied Mathematics, Dekker, New York, 1996.
[5] Y. I. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J. 4(2) (1994) 39–54.
[6] Y. Alber and L. Ryazantseva, Nonlinear ill-posed problems of monotone type, Springer, Dordrecht, 2006.
[7] K. Aoyama and F. Koshaka, Strongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappings, Fixed Point Theory Appl. 95 (2014) 13 pp.
[8] K. Aoyama and F. Koshaka, Existence of fixed points of firmly nonexpansive-like mappings in Banach spaces, Fixed Point Theory Appl. (2010) Art. ID 512751, p. 15.
[9] K. Avetisyan, O. Djordjevic and M. Pavlovic, Littlewood-Paley inequalities in uniformly convex and uniformly smooth Banach spaces, J. math. Anal. Appl. 336(1) (2007) 31–43.
[10] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, R. S. R, Bucharest, 1976.
[11] Y. Censor, A. Gibali and S. Reich, Algorithms for split variational inequality problem, Numer. Algor. 59 (2012) 301–323.
[12] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projection in a product space, Numer. Algor., 8 (1994) 221–239.
[13] Y. Censor, T. Elfving, N. Kopf and T. Bortfield, The multiple-sets split feasibilty problem and its applications for inverse problems, Inverse Prob. 21 (2005) 2071–2084.
[14] Q. L. Dong, D. Jiang, P.Cholmjiak and Y. Shehu, A strong convergence result involving an inertial forwardbackward splitting algorithm for monotone inclusions, J. Fixed Theory Appl. 19(4) (2017) 3097–3118.
[15] B. Eicke, Iteration methods for convexly constrained ill-posed problems in Hilbert space, Numer. Funct. Anal. Optim. 13, (1992) 413–429.
[16] H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers Group, Dordrecht, 1996.
[17] J. N. Ezeora and C. Izuchukwu, Iterative approximation of solution of split variational inclusion problem, Filomat, 32 (8) (2018) 2921–2932.
[18] J. N. Ezeora, H. A. Abass and C. Izuchukwu, Strong convergence of an inertial-type algorithm to a common solution of minimization and fixed point problems, Math. Vesnik, 71(4) (2019) 338-350.
[19] K. Geobel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990.
[20] G. Kassay, S. Reich and S. Sabach, Iterative methods for solving systems of variational inequalities in Reflexive Banach spaces, SIAM J. Optim. 21 (2011) 1319–1344.
[21] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim. 19(2) (2008) 824–835.
[22] Z. Jouymandi and F. Moradlou, Retraction algorithms for solving variational inequalities, pseudomonotone equilibrium problems and fixed point problems in Banach spaces, Numer. Algor. 78 (2018) 1153–1182.
[23] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in Banach space, SIAM J. Optim. 13 (2002) 938–945.
[24] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16 (1979) 964–979.
[25] Z. Ma, L. Wang and S. S. Chen, On the split feasibility problem and fixed point problem of quasi-φ-nonexpansive in Banach spaces, Numer. Algor. (2018), https://doi.org/10.1007/s11075-018-0523-1.
[26] S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in Banach spaces, J. Approx. Theor. 134 (2005) 257–266.
[27] A.A. Mebawondu, C. Izuchukwu, K.O. Aremu and O.T. Mewomo, Some fixed point results for a generalized TAC-Suzuki-Berinde type F-contractions in b-metric spaces, Appl. Math. E-Notes 19 (2019) 629-–653.
[28] A.A. Mebawondu and O.T. Mewomo, Some fixed point results for TAC-Suzuki contractive mappings, Commun. Korean Math. Soc. 34(4) (2019) 1201-–1222.
[29] A. A. Mebawondu and O.T. Mewomo, Some convergence results for Jungck-AM iterative process in hyperbolic spaces, Aust. J. Math. Anal. Appl. 16(1)(2019) 20.
[30] A. A. Mebawondu and O.T. Mewomo, Suzuki-type fixed point results in Gb-metric spaces, Asian-Eur. J. Math. (2020) DOI: 10.1142/S1793557121500704.
[31] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011) 275–283.
[32] A. Moudafi and B. S. Thakur, Solving proximal split feasibility problems without prior knowledge of operator norms, Optim. Letter, 8 (2014) 2099–2110.
[33] F.U. Ogbuisi and C. Izuchukwu, Approximating a zero of sum of two monotone operators which solves a fixed point problem in reflexive Banach spaces, Numer. Funct. Anal. 41 (3) (2020) 322-–343
[34] D. H. Peaceman and H. H. Rashford, The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math. 3 (1995) 267–275.
[35] J. Peypouquet, Convex optimization in Normed spaces. Theory, Methods and Examples, Springer Briefs in Optimization, Springer, 2015.
[36] K. Promluang and P. Kuman, Viscosity approximation method for split common null point problems betweenBanach spaces and Hilbert spaces, J. Inform. Math. Sci. 9 (1) (2017) 27–44.
[37] X. Qin, Y. J. Cho and S. M. Kang, Convergence theorems of common elements for equilibrium problem and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225 (2009) 20–30.
[38] R.T. Rockfellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1977) 877–808.
[39] S. Reich and S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, In: Fixed-Point Algorithms for inverse Problems in Science and Engineering, pp. 299-314. Springer, New York, 2010.
[40] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970) 75–288.
[41] Y. Shehu, Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces, Results Math. 74 (2019) 138.
[42] Y. Shehu, Iterative approximation for zeros of sum of accretive operators in Banach spaces, J. Fuct. Spac. (2015), Article ID 5973468, 9 pages.
[43] Y. Shehu, Iterative approximation method for finite family of relatively quasi-nonexpansive mapping and systems of equilibrium problem, J. Glob. Optim. (2014), DOI.10.1007/s10898-010-9619-4.
[44] Y. Shehu and O. S. Iyiola, Convergence analysis for the proximal split feasibility using an inertial extrapolation term method, J. Fixed Point Theory Appl. 19 (2017) 2483–2510.
[45] A. Taiwo, T. O. Alakoya and O. T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion between Banach spaces, Numer. Algor., (2020), Doi.org/10.007/s 11075-020-00737-2.
[46] W. Takahashi, Nonlinear Functional Analysis, Fixed Theory Applications, Yokohama-Publishers, 2000.
[47] P.T. Vuong, J. J. Stroduot and V. H. Nguyen, A gradient projection method for solving split equality and split feasibility problems in Hilbert space, Optim. 64 (2015) 2321–2341.
[48] K. Wattanawitoon and P. Kuman, Strong convergence theorems by a new hybrid projection algorithm for fixed point problem and equilibrium problems of two relatively quasi-nonexpansive mappings, Nonlinear Anal. Hybrid Syst. 3 (2009) 11–20.
[49] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. Theory Meth. Appl. 16 (1991) 1127–1138.
[50] J. C. Yao, Variational inequalities with generalized monotone operators, Math. Oper. Res. 19 (1994) 691–705.
[51] H. Zhang and L. Ceng, Projection splitting methods for sums of maximal monotone operators with applications, J. Math. Anal. Appl. 406 (2013) 323–334.
[52] J. Zhang and N. Jiang, Hybrid algorithm for common solution of monotone inclusion problem and fixed point problem and applications to variational inequalities, Springer Plus, 5 (2016) 803.