[1] M. Akagi, Y. Nakamura, T. Higaki and et al., Correction to: Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT[J], European Radiology, 29 (2019).
[2] J. Chan, S. Yuan, K.H. Kok and et al., A familial cluster of COVID-19 associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster[J], Lancet. 2020 Jan 24. pii: S0140- 6736(20)30154-9. doi: 10.1016/S0140-6736(20)30154-9.
[3] A. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs, (2018).
[4] B. Gharbi, S. Micha¨el, J. Chen, J. Barron and et al., Deep Bilateral Learning for Real-Time Image Enhancement[J], Acm Transactions on Graphics, 36 (2017) 118.
[5] S. Hassantabar, M. Ahmadi and A. Sharifi, Diagnosis and detection of infected tissue of COVID-19 patients based on lung X-ray image using convolutional neural network approaches, Chaos, Solitons and Fractals, 140 (2020) 110170.
[6] M. Hesamian, W. Jia, X. He and et al., Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges[J], Journal of Digital Imaging, 32 (2019).
[7] C. Huang, Y. Wang, X. Li and et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J], Lancet. 2020 Jan 24. pii: S0140-6736(20)30183-5. doi:10.1016/S0140-6736(20)30183-5.
[8] Q. Li, X. Guan, P. Wu and et al., Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected COVID-19[J], N Engl J Med. 2020 Jan 29. doi: 10.1056/NEJMoa2001316.
[9] P. Liu, L. Shi, W. Zhang, J. He, C. Liu, C. Zhao and L. Hu, Prevalence and genetic diversity analysis of human coronaviruses among cross-border children. Virology journal, 14 (2017) 1-8.
[10] B. Moons, D. Bankman and M. Verhelst, Embedded Deep Learning, (2018).
[11] J. Nagi, F. Ducatelle, G. Di Caro, D. Cire¸san, U. Meier, A. Giusti and L. Gambardella, Max-pooling convolutional neural networks for vision-based hand gesture recognition, IEEE International Conference on Signal and Image Processing Applications (ICSIPA), (2011) 342-347.
[12] A. Narin, C. Kaya and Z. Pamuk, Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks, arXiv preprint arXiv:2003.10849, (2020).
[13] A. Narin, C. Kaya and Z. Pamuk, Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks, arXiv preprint arXiv:2003.10849.A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs, 2018.
[14] M. Rahimzadeh and A. Attar, A new modified deep convolutional neural network for detecting COVID-19 from X-ray images, arXiv preprint arXiv:2004.08052, (2020).
[15] L. Wang, Z. Lin and A. Wong, Covid-net: A tailored deep convolutional neural network design for detection of covid 19 cases from chest x-ray images, Scientific Reports, 10 (2020) 1-12.
[16] A. Zhavoronkov, V. Aladinskiy, A. Zhebrak and et al., Potential COVID-2019 3C-like protease inhibitors designed using generative deep learning approaches, Insilico Medicine Hong Kong Ltd A 307 (2020): E1.
[17] N. Zhu, D. Zhang, W. Wang and et al., A Novel Coronavirus from Patients with COVID-19 in China, 2019[J], N Engl J Med. 2020 Jan 24. doi: 10.1056/NEJMoa2001017.
[18]
https://www.pyimagesearch.com/2020/03/16/detecting-covid-19-in-x-ray-images learning/ fbclid=IwAR0UNoeVISUBISFDyJi5UX9KGFGn4dJAHHW2AvCz6ILXcv6dwLH8QBsG18].