[1] M. A. Al-Fawzan, Methods for estimating the parameters of the Weibull distribution. King Abdulaziz City for Science and Technology, Saudi Arabia (2000).
[2] H. ALkanani and M. A. Abbas , the non Bayesian estimation s method for parameters of exponentiated weibull (Ew) distribution InternationalJournal of Mathematics and statistic, 2(5)(2014)81-94.
[3] H. Al - Nachawati and S. E. Abu Youssef , A Bayesian Analysis of Order Statistics from the Generalized Rayleigh Distribution, Applied Mathematics Sciences, 3(27)(2009):1315-1325.
[4] A. A. Al- Naqeeb , Suggested Method of Location & Scale Parameters Estimates for Rayleigh distribution According to the Expected Value of the Standardized Order Statistics by Simulation, Al-Tiqani Journal, 23(6)(2010):1-14.
[5] S. F. Ateya, Estimation under modified Weibull distribution based on right censored generalized order statistics. Journal of Applied Statistics, 40(12),(2013) 2720-2734.
[6] S. H. Dhwyia , F. A. Faten , A. I. Nathier and A. A. Hani ,Proposed Methods for Estimating Parameters of the Generalized Rayleigh Distribution in the Presence of One Outlier, American Journal of Mathematics and Statistics, 2(6)(2012):178-183.
[7] N.L. Johnson , S. Kotz, & N. Balakrishnan, Continuous Univariate Distributions, 2nd ed, John Wiley and Sons, Inc., NewYork,USA, Volume 1, (1994), 1-77, .
[8] D. Kundu and M. Z. Raqab , Generalized Rayleigh Distribution: Different Methods of Estimation,Int. J. Modern Math. Sci. 2014, 10(2):103-115
[9] J. Ling, J. Pan, . A new method for selection of population distribu- tion and parameter estimation. Reliability Engineering System Safety, 60(3),(1998) 247-255.
[10] D. C. Montgomery, G. C. Runger, Applied statistics and probability for engineers. John Wiley Sons (2010).
[11] E. Parzen, Nonparametric statistical data modeling. Journal of the American statistical association, 74(365),(1979) 105-121.
[12] F. Parvin , A. Ali and J. K. Hossein , Estimating R = P(Y < X) in the Generalized Rayleigh Distribution with Different Scale Parameters, Applied Mathematics Sciences, 7(2)(2013):87-92.
[13] J. G. Surles, and W. J. Padgett, Inference for Reliability and Stress - Strength for a Scaled Burr Type X Distribution, Lifetime Data Analysis, 7(2001):187-200.