Common fixed point of generalized weakly contractive mappings on orthogonal modular spaces with applications

Document Type : Research Paper

Author

Imam Khomeini International University, Buin Zahra Higher Education Center of Engineering and Technology, Buin Zahra, 3451866391, Qazvin, Iran

Abstract

In this paper, we provide certain conditions under which guarantee the existence of a common fixed point for weakly contractive mappings defined on orthogonal modular spaces. Also, Banach fixed point theorem on an orthogonal modular space without completeness is obtained.  To prove much stronger and more applicable results,  some strong assumptions such as the convexity and the Fatou property of a modular are relaxed.

Keywords

[1] M. Abbas and D. Dori`c, Common fixed point theorem for four mappings satisfying generalized weak contractive condition, Filomat 24 (2010) 1–10.
[2] M. Abbas, S. Ali and P. Kumam, Common fixed points in partially ordered modular function spaces, J. Ineq. Appl. 78 (2014) 1–12.
[3] A. A. Abdo and M. A. Khamsi, On common fixed points in modular vector spaces, Fixed Point Theory Appl. 229 (2015) 1–9.
[4] A. Ait Taleb and E. Hanebaly, A Fixed point theorem and its application to integral equations in modular function spaces, Proc. Amer. Math. Soci. 128 (1999), 419–426.
[5] S. A. Al-Mezel, A. Al-Roqi and M. A. Khamsi, One-local retract and common fixed point in modular function spaces, Fixed Point Theory Appl. 109 (2012) 1–13.
[6] A. Aghaiani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca 4 (2014) 941–960.
[7] H. Baghani, M. Eshaghi Gordji and M. Ramezani, Orthogonal sets: The axiom of choice and proof of a fixed point theorem, J. Fixed Point Theory Appl. 18 (2016) 465–477.
[8] S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund. Math. 3 (1922) 133–181.
[9] T. Dominguez-Benavides, M. A. Khamsi and S. Samadi, Asymptotically regular mappings in modular function spaces, Scientiae Math. Japon. 2 (2001) 295–304.
[10] S. Dhompongsa, T. D. Benavides, A. Kaewcharoen and B. Panyanak, Fixed point theorems for multivalued mappings in modular function spaces, Sci. Math. Japon. 53 (2006) 139–147.
[11] M. Eshaghi Gordji and H. Habibi, Existence and uniqueness of solutions to a first-order differential equation via fixed point theorem in orthogonal metric space, Facta Univ. Ser. Math. Inform. 34 (2019) 123–135.
[12] Z. Eivazi Damirchi Darsi Olia, M. Eshaghi Gordji and D. Ebrahimi Bagha, Banach fixed point theorem on orthogonal cone metric spaces, FACTA Universitatis (NIS) Ser. Math. Inform. 35 (2020) 1239–1250.
[13] M. Eshaghi Gordji and H. Habibi, Fixed point theory in e-connected orthogonal metric space, Sahand Commun. Math. Anal. 16 (2019) 35–46.
[14] M. Eshaghi Gordji, H. Habibi and M.B. Sahabi, Orthogonal sets; orthogonal contractions, Asian-Eur. J. Math. 12 (2019) 1–10.
[15] M. Eshaghi Gordji and H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Top. Algebra 6 (2017) 251–260.
[16] M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y.J. Cho, On orthogonal sets and Banach’s fixed point theorem, Fixed Point Theory 18 (2017) 569–578.
[17] M. A. Japon, Applications of Musielak-Orlicz spaces in modern control systems, Teubner-Texte Math. 103 (1988) 34–36.
[18] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Sci. 9 (1986) 771–779.
[19] H. Hosseinia and M. Eshaghi Gordji, Fixed Point Results in Orthogonal Modular Metric Spaces, Int. J. Nonlinear Anal. Appl. 11 (2020) 425–436.
[20] S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, Fixed point theorems in R-metric spaces with applications, AIMS Math. 5 (2020) 3125–3137.
[21] S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, R-topological spaces and SR-topological spaces with their applications, Math. Sci. 14 (2020) 249–255.
[22] M. A. Khamsi, W. M. Kozlowski and S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal. Theory Meth. Appl. 14 (1990) 935–953.
[23] M. A. Khamsi, A convexity property in modular function spaces, Math. Japon. 44 (1996) 269–279.
[24] M. A. Khamsi, W.K. Kozlowski, and C. Shutao, Some geometrical properties and fixed point theorems in Orlicz spaces, J. Math. Anal. Appl. 155 (1991) 393–412.
[25] M. A.Khamsi and W. K. Kozlowski, On asymptotic pointwise nonexpansive mappings in modular function spaces, J Math Anal. Appl. 380 (2011) 697–708.
[26] W. M. Kozlowski, Modular Function Spaces, Marcel Dekker, Inc., New York, USA, 1988.
[27] K. Kuaket and P. Kumam, Fixed points of asymptotic pointwise contractions in modular spaces, Appl. Math. Lett. 24 (2011) 1795–1798.
[28] P. Kumam, Fixed point theorem for non-expansive mappings in modular spaces, Arch. Math. 40 (2004) 345–353.
[29] M.A. Kutbi and A. Latif, Fixed points of multivalued mappings in modular function spaces, Fixed Point Theory Appl. 2009 (2009) 1–12.
[30] F. Lael and K. Nourouzi, On the fixed points of correspondences in modular spaces, Int. Scholar. Res. Network Geomet. 2011 (2011) 1–7.
[31] F. Lael and S. Shabanian, Convexity and boundedness relaxation for fixed point theorems in modular spaces, Appl. Gen. Topol. 22 (2021) 91–108.
[32] F. Lael, N. Saleem and M. Abbas, On the fixed points of multivalued mappings in b-metric spaces and their application to linear systems, U.P.B. Sci. Bull. Ser. A. 82 (2020) 121–130.
[33] C. Mongkolkeha and P. Kumam, Fixed point and common fixed point theorems for generalized weak contraction mappings of integral type in modular spaces, Int. J. Math. Math. Sci. 2011 (2011) 1–12.
[34] C. Mongkolkeha and P. Kumam, Common fixed points for generalized weak contraction mappings in modular spaces, Sci. Math. Jpn. 2012 (2012) 117–127.
[35] C. Mongkolkeha and P. Kumam, Some fixed point results for generalized weak contraction mappings in modular spaces, Int. J. Anal. 2013 (2013) 1–6.
[36] J. Musielak, Orlicz Spaces and Modular Spaces, Springer-Verlag, Berlin, 1983.
[37] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959) 49–65.
[38] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, Japan, 1950.
[39] K. Nourouzi and S.Shabanian, Operators defined on n-modular spaces, Mediter. J. Math. 6 (2009), 431–446.
[40] W. Orlicz, Uber eine gewisse klasse von Raumen vom Typus B ¨ , Bull. Acad. Polon. Sci. A. (1932) 207–220.
[41] W. Orlicz, Uber Raumen ¨ LM, Bull. Acad. Polon. Sci. A. (1936) 93–107.
[42] O. Popescu. Fixed point for (ψ, φ)−weak contractions, Appl. Math. Lett. 24 (2011) 1–4.
[43] M. Ramezani and H. Baghani, The Meir − Keeler fixed point theorem in incomplete modular spaces with application, J. Fixed Point Theory Appl. 19 (2017) 2369–2382.
[44] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001) 2683–2693.
[45] N. Saleem, M. D. la Sen and Sadia Farooq, Coincidence best proximity point results in Branciari metric spaces with applications, J. Funct. Spac. 2020 (2020) 1–17.
[46] N. Saleem, I. Iqbal, B. Iqbal and S. Radenov´ic, Coincidence and fixed points of multivalued F-contractions in generalized metric space with application, J. Fixed Point Theory Appl. 22 (2020) 1–24.
[47] S. Shabanian and K. Nourouzi, Modular Space and Fixed Point Theorems, Thesis (in Persian), K.N.Toosi University of Technology, 2007.
[48] N. Van Dung, Notes on orthogonal-complete metric spaces, Bull. Aust. Math. Soc. (2021) 1–7.
Volume 12, Issue 2
November 2021
Pages 1121-1140
  • Receive Date: 24 January 2021
  • Revise Date: 18 May 2021
  • Accept Date: 29 May 2021