[1] M. Abbas and D. Dori`c, Common fixed point theorem for four mappings satisfying generalized weak contractive condition, Filomat 24 (2010) 1–10.
[2] M. Abbas, S. Ali and P. Kumam, Common fixed points in partially ordered modular function spaces, J. Ineq. Appl. 78 (2014) 1–12.
[3] A. A. Abdo and M. A. Khamsi, On common fixed points in modular vector spaces, Fixed Point Theory Appl. 229 (2015) 1–9.
[4] A. Ait Taleb and E. Hanebaly, A Fixed point theorem and its application to integral equations in modular function spaces, Proc. Amer. Math. Soci. 128 (1999), 419–426.
[5] S. A. Al-Mezel, A. Al-Roqi and M. A. Khamsi, One-local retract and common fixed point in modular function spaces, Fixed Point Theory Appl. 109 (2012) 1–13.
[6] A. Aghaiani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca 4 (2014) 941–960.
[7] H. Baghani, M. Eshaghi Gordji and M. Ramezani, Orthogonal sets: The axiom of choice and proof of a fixed point theorem, J. Fixed Point Theory Appl. 18 (2016) 465–477.
[8] S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund. Math. 3 (1922) 133–181.
[9] T. Dominguez-Benavides, M. A. Khamsi and S. Samadi, Asymptotically regular mappings in modular function spaces, Scientiae Math. Japon. 2 (2001) 295–304.
[10] S. Dhompongsa, T. D. Benavides, A. Kaewcharoen and B. Panyanak, Fixed point theorems for multivalued mappings in modular function spaces, Sci. Math. Japon. 53 (2006) 139–147.
[11] M. Eshaghi Gordji and H. Habibi, Existence and uniqueness of solutions to a first-order differential equation via fixed point theorem in orthogonal metric space, Facta Univ. Ser. Math. Inform. 34 (2019) 123–135.
[12] Z. Eivazi Damirchi Darsi Olia, M. Eshaghi Gordji and D. Ebrahimi Bagha, Banach fixed point theorem on orthogonal cone metric spaces, FACTA Universitatis (NIS) Ser. Math. Inform. 35 (2020) 1239–1250.
[13] M. Eshaghi Gordji and H. Habibi, Fixed point theory in e-connected orthogonal metric space, Sahand Commun. Math. Anal. 16 (2019) 35–46.
[14] M. Eshaghi Gordji, H. Habibi and M.B. Sahabi, Orthogonal sets; orthogonal contractions, Asian-Eur. J. Math. 12 (2019) 1–10.
[15] M. Eshaghi Gordji and H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Top. Algebra 6 (2017) 251–260.
[16] M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y.J. Cho, On orthogonal sets and Banach’s fixed point theorem, Fixed Point Theory 18 (2017) 569–578.
[17] M. A. Japon, Applications of Musielak-Orlicz spaces in modern control systems, Teubner-Texte Math. 103 (1988) 34–36.
[18] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Sci. 9 (1986) 771–779.
[19] H. Hosseinia and M. Eshaghi Gordji, Fixed Point Results in Orthogonal Modular Metric Spaces, Int. J. Nonlinear Anal. Appl. 11 (2020) 425–436.
[20] S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, Fixed point theorems in R-metric spaces with applications, AIMS Math. 5 (2020) 3125–3137.
[21] S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, R-topological spaces and SR-topological spaces with their applications, Math. Sci. 14 (2020) 249–255.
[22] M. A. Khamsi, W. M. Kozlowski and S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal. Theory Meth. Appl. 14 (1990) 935–953.
[23] M. A. Khamsi, A convexity property in modular function spaces, Math. Japon. 44 (1996) 269–279.
[24] M. A. Khamsi, W.K. Kozlowski, and C. Shutao, Some geometrical properties and fixed point theorems in Orlicz spaces, J. Math. Anal. Appl. 155 (1991) 393–412.
[25] M. A.Khamsi and W. K. Kozlowski, On asymptotic pointwise nonexpansive mappings in modular function spaces, J Math Anal. Appl. 380 (2011) 697–708.
[26] W. M. Kozlowski, Modular Function Spaces, Marcel Dekker, Inc., New York, USA, 1988.
[27] K. Kuaket and P. Kumam, Fixed points of asymptotic pointwise contractions in modular spaces, Appl. Math. Lett. 24 (2011) 1795–1798.
[28] P. Kumam, Fixed point theorem for non-expansive mappings in modular spaces, Arch. Math. 40 (2004) 345–353.
[29] M.A. Kutbi and A. Latif, Fixed points of multivalued mappings in modular function spaces, Fixed Point Theory Appl. 2009 (2009) 1–12.
[30] F. Lael and K. Nourouzi, On the fixed points of correspondences in modular spaces, Int. Scholar. Res. Network Geomet. 2011 (2011) 1–7.
[31] F. Lael and S. Shabanian, Convexity and boundedness relaxation for fixed point theorems in modular spaces, Appl. Gen. Topol. 22 (2021) 91–108.
[32] F. Lael, N. Saleem and M. Abbas, On the fixed points of multivalued mappings in b-metric spaces and their application to linear systems, U.P.B. Sci. Bull. Ser. A. 82 (2020) 121–130.
[33] C. Mongkolkeha and P. Kumam, Fixed point and common fixed point theorems for generalized weak contraction mappings of integral type in modular spaces, Int. J. Math. Math. Sci. 2011 (2011) 1–12.
[34] C. Mongkolkeha and P. Kumam, Common fixed points for generalized weak contraction mappings in modular spaces, Sci. Math. Jpn. 2012 (2012) 117–127.
[35] C. Mongkolkeha and P. Kumam, Some fixed point results for generalized weak contraction mappings in modular spaces, Int. J. Anal. 2013 (2013) 1–6.
[36] J. Musielak, Orlicz Spaces and Modular Spaces, Springer-Verlag, Berlin, 1983.
[37] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959) 49–65.
[38] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, Japan, 1950.
[39] K. Nourouzi and S.Shabanian, Operators defined on n-modular spaces, Mediter. J. Math. 6 (2009), 431–446.
[40] W. Orlicz, Uber eine gewisse klasse von Raumen vom Typus B ¨ , Bull. Acad. Polon. Sci. A. (1932) 207–220.
[41] W. Orlicz, Uber Raumen ¨ LM, Bull. Acad. Polon. Sci. A. (1936) 93–107.
[42] O. Popescu. Fixed point for (ψ, φ)−weak contractions, Appl. Math. Lett. 24 (2011) 1–4.
[43] M. Ramezani and H. Baghani, The Meir − Keeler fixed point theorem in incomplete modular spaces with application, J. Fixed Point Theory Appl. 19 (2017) 2369–2382.
[44] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001) 2683–2693.
[45] N. Saleem, M. D. la Sen and Sadia Farooq, Coincidence best proximity point results in Branciari metric spaces with applications, J. Funct. Spac. 2020 (2020) 1–17.
[46] N. Saleem, I. Iqbal, B. Iqbal and S. Radenov´ic, Coincidence and fixed points of multivalued F-contractions in generalized metric space with application, J. Fixed Point Theory Appl. 22 (2020) 1–24.
[47] S. Shabanian and K. Nourouzi, Modular Space and Fixed Point Theorems, Thesis (in Persian), K.N.Toosi University of Technology, 2007.
[48] N. Van Dung, Notes on orthogonal-complete metric spaces, Bull. Aust. Math. Soc. (2021) 1–7.