[1] X. Liu, L. Lu, Z. Shen and K. Lu, A novel face recognition algorithm via weighted kernel sparse representation, Future Gen. Comput. Syst. 80 (2018) 653–663.
[2] A.S. Georghiades, P.N. Belhumeur and D.J. Kriegman, From few to many: Illumination cone models for face recognition under variable lighting and pose, IEEE Trans. Pattern Anal. Machine Intel. 23(6) (2001) 643–660.
[3] Y. Adini, Y. Moses and S. Ullman, Face recognition: The problem of compensating for changes in illumination direction, IEEE Trans. Pattern Anal. Machine Intel. 19(7) (1997) 721–732.
[4] C. Ding, J. Choi, D. Tao and L.S. Davis, Multi-directional multi-level dual-cross patterns for robust face recognition, IEEE Trans. Pattern Anal. Machine Intel. 38(3) (2015) 518–531.
[5] J. Yang, L. Luo, J. Qian, Y. Tai, F. Zhang and Y. Xu, Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes, IEEE Trans. Pattern Anal. Machine Intel. 39(1) (2016) 156–171.
[6] X. Luan, B. Fang, L. Liu, W. Yang and J. Qian, Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion, Pattern Recog. 47(2) (2014) 495–508.
[7] I.A. Kakadiaris, G. Toderici, G. Evangelopoulos, G. Passalis, D. Chu, X. Zhao, S.K. Shah and T. Theoharis, 3D2D face recognition with pose and illumination normalization, Comput. Vision Image Under. 154 (2017) 137–151.
[8] W. Zhang, X. Zhao, J.M. Morvan and L. Chen, Improving shadow suppression for illumination robust face rcognition, IEEE Trans. Pattern Anal. Machine Intel. 41(3) (2018) 611–624.
[9] M.R. Mohammadi, E. Fatemizadeh and M.H. Mahoor, Non-negative sparse decomposition based on constrained smoothed `0 norm, Signal Proces. 100 (2014) 42–50.
[10] J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry and Yi Ma, Robust face recognition via sparse representation, IEEE Trans. Pattern Anal. Machine Intel. 31(2) (2008) 210–227.
[11] L. Zhang, M. Yang and X. Feng, Sparse representation or collaborative representation: Which helps face recognition?, Int. Conf. Comput. Vision, IEEE, (2011) 471–478.
[12] Y. Gao, J. Ma and A.L. Yuille, Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples, IEEE Trans. Image Proces. 26(5) (2017) 2545–2560.
[13] J. Wang, C. Lu, M. Wang, P. Li, S. Yan and X. Hu, Robust face recognition via adaptive sparse representation, IEEE Trans. Cyber. 44(12) (2014) 2368–2378.
[14] D. Donoho and M. Elad, Optimal sparse representation in general (nonorthogonal) dictionaries via `1 minimization, Proc. Nat. Acad. Sci. 100(5) (2003) 2197–2202.
[15] D. Donoho, For most large underdetermined systems of linear equations the minimal `1 norm solution is also the sparset solution, Commun. Pure Appl. Math. 59(6) (2006) 797–829.
[16] H. Mohimani, M. Babaie-Zadeh and C. Jutten, A fast approach for overcomplete sparse decomposition based on smoothed `0 norm, IEEE Trans. Signal Proces. 57(1) (2008) 289–301.
[17] A. Ghaffari, Two dimensional sparse decomposition and its application to image denoising, MSc Thesis, Sharif University of Technology, 2009.
[18] X. He, S. Yan, Y. Hu, P. Niyogi and H. Zhang, Face recognition using Laplacianfaces, IEEE Trans. Pattern Anal. Machine Intel. 27(3) (2005) 328–340.
[19] R. Basri and D. Jacobs, Lambertian reflectance and linear subspaces, IEEE Trans. Pattern Anal. Machine Intel. 25(2) (2003) 218–233.
[20] M. Babaie-Zadeh, B. Mehrdad and G.B. Giannakis, Weighted sparse signal decomposition, Proc. IEEE Int. Conf. Acoustics, Speech Signal Proc. 2012 (2012) 3425–3428.
[21] A. Eftekhari, M. Babaie-Zadeh, C. Jutten and H.A. Moghaddam, Robust-SL0 for stable sparse representation in noisy settings, Proc. IEEE Int. Conf. Acoustics, Speech Signal Proc. (2009) 3433—3436.
[22] B. Horn, Determining lightness from an image, Comput. Graph. Image Proc. 3.4 (1974) 277–299.