[1] B. Alsadik, Adjustment Models in 3d Geomatics and Computational Geophysics with Matlab Examples, Elsevier Inc. 2019.
[2] F. Amato, A. L´opez, E. M. Pe¯na-M´endez, P. Va˘nhara, A. Hamp and J. Havel, Artificial neural networks in medical diagnosis, J. Appl. Biomed. 11(2) (2013) 47–58.
[3] M. D. Bedworth and J. S. Bridle, Experiments With the Back Propagation Algorithm a Systematic Look at a Small Problem, Royal Singals And Radar Establishment (RSRE), 1987.
[4] N. Bisoyi, H. Gupta, N. P. Padhy and G. J. Chakrapani, Prediction of daily sediment discharge using a back propagation neural network training algorithm: A case study of the Narmada River, India, Int. J. Sediment Res. 34(2) (2018) 125–135.
[5] L. Das, N. Kumar, R. S. Lather and P. Bhatia, Emerging Trends in Mechanical Engineering: Select Proceedings of ICETMIE, Springer, 2021.
[6] F. Govaers, Introduction and Implementations of the Kalman Filter, InTechOpen, 2019.
[7] S. Haykin, Kalman Filtering and Neural Networks, Wiley-Interscience, 2001.
[8] Y. Huang, Y. Zhang, Z. Wu, N. Li and J. Chambers, A novel robust student’s t-based Kalman filter, IEEE Trans. Aerospace Elect. Syst. 53(3) (2017) 1545–1554.
[9] J. Humpherys, P. Redd and J. West, A fresh look at the kalman filter, Siam Review, 54(4) (2012) 801-–823.
[10] D. Jin and S. Lin, Advances in Computer Science and Information Engineering, Springer-Verlag, Berlin Heidelberg, 2012.
[11] R. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng. 82(1) (1960) 35–45.
[12] R. Kleinbauer, Kalman Filtering Implementation with Matlab, Universit¨at Stuttgart, 2004.
[13] M. Kianpour, E. Mohammadinasab and T. M. Isfahani, Comparison between genetic algorithm-multiple linear regression and back-propagation-artificial neural network methods for predicting the LD50 of organo (phosphate and thiophosphate) compounds, Journal of the Chinese Chemical Soc. 67(8) (2020) 1356–1366.
[14] B. Lagos-Alvarez, L. Padilla, J. Mateu and G. Ferreira, ´ A Kalman filter method for estimation and prediction of space–time data with an autoregressive structure, J. Stat. Plann. Inf. 203 (2019) 117–130.
[15] Q. Li, R. Li, K. Ji and W. Dai, Kalman filter and its application, Int. Conf. Intel. Networks Intel. Syst. (2015), doi: 10.1109/ICINIS.2015.35.
[16] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman and G. Hinton, Backpropagation and the brain, Nature Reviews Neurosci.21 (2020) 335—346.
[17] H. Ma, L. Yan, Y. Xia and M. Fu, Kalman Filtering and Information Fusion, Springer Singapore, 2020.
[18] N. M. Nawi, N. M. Zaidi, N. A. Hamid, M. Z. Rehman, A. A. Ramli and S. Kasim, Optimal parameter selection using three-term back propagation algorithm for data classification, Int. J. Adv. Sci. Engin. Inf. Tech. 7(4-2) (2017) 1528–1534.
[19] B. Nalepa and A. Gwiazda, Kalman filter estimation of angular acceleration, IOP Conf. Series: Mat. Sci. Engin.
2020.
[20] K. L. Priddy and P. E. Keller, Artificial Neural Networks: An Introduction, Spie, 2005.
[21] S. Setti and A. Wanto, Analysis of backpropagation algorithm in predicting the most number of internet users in the world, J. Online Inf. 3(2) (2018) 110–115.
[22] M. Sornam and M. P. Devi, A survey on back propagation neural network, Int. J. Commun. Network. Syst. 5(1) (2016) 70–74.
[23] G. Tricoles, E. Rope and O. Yue, Enhancement of short-range microwave images produced by backward propagation, Soc. Photo-Optical Instrum. Engin. 1977 (1977), https://doi.org/10.1117/12.955670.
[24] B. Ul Islam, A. Mukhtar, S. Saqib, A. Mahmood, S. Rafiq, A. Hameed, M. Saad Khan, K. Hamid, S. Ullah, A. Al-Sehemi and M. Ibrahim, Thermal conductivity of multiwalled carbon nanotubes-kapok seed oil-based nanofluid, Chemical Engin. Tech. 48(8) (2020) 1638–1647.
[25] G. Welch and G. Bishop, An Introduction to the Kalman Filter, University of North Carolina at Chapel Hill, TR, 2006.
[26] X. Zhang, X. Chen and J. Li, Improving dam seepage Prediction using back-propagation neural network and genetic algorithm, Math. Prob. Engin. 2020 (2020) Article ID 1404295.
[27] S. Zhao and B. Huang, Trial-and-error or avoiding a guess? initialization of the Kalman filter, Autom. 121 (2020) 109184.