Fixed point theorems of non-commuting mappings in b-multiplicative metric spaces

Document Type : Research Paper

Authors

1 Department of Mathematics, Manipur, 795003, Manipur University, Canchipur Imphal, India

2 MU, Department of Mathematics, Manipur, 795003 Manipur University, Canchipur, Manipur, India.

3 Department of Humanities and Basic Sciences, Manipur Institute of Technology, Takyelpat-795004, Manipur, India

Abstract

In this paper, we discuss some common fixed point theorems for compatible mappings of type (E) and Rweakly commuting mappings of type (P) of a complete bmultiplicative metric space along with some examples. As an application, we establish an existence and uniqueness theorem for a solution of a system of multiplicative integral equations. In the last section, we introduce the concept of Rmultiplicative metric space by giving some examples and at the end of the section, we give an open question.

Keywords


[1] M. U. Ali, T. Kamran and A. Kurdi, Fixed point theorems in b−multiplicative metric spaces, U. P. B. Sci. Bull.,
Series A., 79(3) (2017) 107–116.
[2] H. Baghani, M. Eshaghi Gordji and M. Ramezani, Orthogonal sets : The axiom of choice and proof of a fixed
point theorem, J. Fixed Point Theory Appl. 18(2016) 465–477.
[3] A. E. Bashirov, E. Misirli Kurpinar and A. Ozyapici, Multiplicative calculus and its applications, J. Math. Anal.
Appl. 337 (2008) 36–48.
[4] A. Bashirov and M. Riza, On complex multiplicative integration, arXiv: 1307.8293v1[math.CV] 31 Jul 2013.
[5] M. Eshaghi and H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Alg. 6(3)
(2017) 251–260.
[6] M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y. J. Cho, On orthogonal sets and Banach fixed point
theorem, Fixed Point Theo. 18 (2016) 465–477.
[7] L. Florack and H. V. Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imaging Vis. DOI
10.1007/s10851-011-0275-1, 2011.
[8] M. Grossman and R. Katz, Non-Newtonian Calculus, Pigeon Cove, Mass, Lee Press, 1972.
[9] F. Gu, L. M. Cui and Y.H. Wu, Some fixed point theorems for new contractive type mappings, J. Qiqihar Univ.
19 (2013) 85–89.
[10] C. Y. Jung, P. Kumar, S. Kumar and S. M. Kang, Some common fixed point results for various types of compatible
mappings in multiplicative metric spaces, Int. J. Pure Appli. Math. 115(3) (2017) 497–515.
[11] G. Jungck, Commuting mappings and fixed points, Amer. Math. Month. 83 (1976) 261-263.
[12] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9(4) (1986) 771–779.
[13] S. M. Kang, P. Kumar, S. Kumar, P. Nagpal and S. K. Garg, Common fixed points for compatible mappings and
its variants in multiplicative metric spaces, Int. J. Pure Appli. Math. 102(2) (2015) 383–406.
[14] S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, Fixed point theorems in R−metric spaces with applications,
AIMS Math. 5(4) (2020) 3125-3137.
[15] S. Kumar and S. K. Garg, Expansion mapping theorems in metric spaces, Int. J. Contemp. Math. Sci. 4 (2009)
1749–1758.
[16] P. Nagpal, S. K. Garg. S. Kumar and S. M. Kang, Common fixed points of R−weakly commuting mappings and
its variants for multiplicative expansive mappings, Int. J. Pure Appl. Math. 107(2) (2016) 343–356.
[17] R. P. Pant, A common fixed point theorem under a new condition, Indian J. Pure Appl. Math. 30(2) (1999)
147–152, .
[18] S. Sessa, On a weakly commutativity condition in a fixed point considerations, Publ. Inst. Math. 32(46) (1986)
149–153.[19] R. Sharma and D. Thakur, Some fixed point theorems in multiplicative metric spaces via compatible of type (E)
and weakly sub-sequentially continuous mappings, J. Nonlinear Sci. Appl. 13 (2020) 107-112.
[20] D. Stanley, A multiplicative calculus, Primus IX, 4 (1999) 310–326.
[21] M. R. Singh and Y. M. Singh, Compatible mappings of type (E) and common fixed point theorems of Meir-Keeler
type, Int. J. Math. Sci. Engg. Appl. 1(2)(2007) 299–315.
Volume 12, Issue 2
November 2021
Pages 1299-1315
  • Receive Date: 05 February 2021
  • Revise Date: 12 April 2021
  • Accept Date: 29 May 2021