Fixed point theorems of non-commuting mappings in b-multiplicative metric spaces

Document Type : Research Paper


1 Department of Mathematics, Manipur, 795003, Manipur University, Canchipur Imphal, India

2 MU, Department of Mathematics, Manipur, 795003 Manipur University, Canchipur, Manipur, India.

3 Department of Humanities and Basic Sciences, Manipur Institute of Technology, Takyelpat-795004, Manipur, India


In this paper, we discuss some common fixed point theorems for compatible mappings of type $(E)$ and $R-$weakly commuting mappings of type $(P)$ of a complete $b-$multiplicative metric space along with some examples. As an application, we establish an existence and uniqueness theorem for a solution of a system of multiplicative integral equations. In the last section, we introduce the concept of $R-$multiplicative metric space by giving some examples and at the end of the section, we give an open question.


[1] M. U. Ali, T. Kamran and A. Kurdi, Fixed point theorems in b−multiplicative metric spaces, U. P. B. Sci. Bull.,
Series A., 79(3) (2017) 107–116.
[2] H. Baghani, M. Eshaghi Gordji and M. Ramezani, Orthogonal sets : The axiom of choice and proof of a fixed
point theorem, J. Fixed Point Theory Appl. 18(2016) 465–477.
[3] A. E. Bashirov, E. Misirli Kurpinar and A. Ozyapici, Multiplicative calculus and its applications, J. Math. Anal.
Appl. 337 (2008) 36–48.
[4] A. Bashirov and M. Riza, On complex multiplicative integration, arXiv: 1307.8293v1[math.CV] 31 Jul 2013.
[5] M. Eshaghi and H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Alg. 6(3)
(2017) 251–260.
[6] M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y. J. Cho, On orthogonal sets and Banach fixed point
theorem, Fixed Point Theo. 18 (2016) 465–477.
[7] L. Florack and H. V. Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imaging Vis. DOI
10.1007/s10851-011-0275-1, 2011.
[8] M. Grossman and R. Katz, Non-Newtonian Calculus, Pigeon Cove, Mass, Lee Press, 1972.
[9] F. Gu, L. M. Cui and Y.H. Wu, Some fixed point theorems for new contractive type mappings, J. Qiqihar Univ.
19 (2013) 85–89.
[10] C. Y. Jung, P. Kumar, S. Kumar and S. M. Kang, Some common fixed point results for various types of compatible
mappings in multiplicative metric spaces, Int. J. Pure Appli. Math. 115(3) (2017) 497–515.
[11] G. Jungck, Commuting mappings and fixed points, Amer. Math. Month. 83 (1976) 261-263.
[12] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9(4) (1986) 771–779.
[13] S. M. Kang, P. Kumar, S. Kumar, P. Nagpal and S. K. Garg, Common fixed points for compatible mappings and
its variants in multiplicative metric spaces, Int. J. Pure Appli. Math. 102(2) (2015) 383–406.
[14] S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, Fixed point theorems in R−metric spaces with applications,
AIMS Math. 5(4) (2020) 3125-3137.
[15] S. Kumar and S. K. Garg, Expansion mapping theorems in metric spaces, Int. J. Contemp. Math. Sci. 4 (2009)
[16] P. Nagpal, S. K. Garg. S. Kumar and S. M. Kang, Common fixed points of R−weakly commuting mappings and
its variants for multiplicative expansive mappings, Int. J. Pure Appl. Math. 107(2) (2016) 343–356.
[17] R. P. Pant, A common fixed point theorem under a new condition, Indian J. Pure Appl. Math. 30(2) (1999)
147–152, .
[18] S. Sessa, On a weakly commutativity condition in a fixed point considerations, Publ. Inst. Math. 32(46) (1986)
149–153.[19] R. Sharma and D. Thakur, Some fixed point theorems in multiplicative metric spaces via compatible of type (E)
and weakly sub-sequentially continuous mappings, J. Nonlinear Sci. Appl. 13 (2020) 107-112.
[20] D. Stanley, A multiplicative calculus, Primus IX, 4 (1999) 310–326.
[21] M. R. Singh and Y. M. Singh, Compatible mappings of type (E) and common fixed point theorems of Meir-Keeler
type, Int. J. Math. Sci. Engg. Appl. 1(2)(2007) 299–315.
Volume 12, Issue 2
November 2021
Pages 1299-1315
  • Receive Date: 05 February 2021
  • Revise Date: 12 April 2021
  • Accept Date: 29 May 2021