[1] A. Aghajani and M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in
partially ordered b-metric spaces, Math. Slovaca, 64(4) (2014) 941–960.
[2] I. A. Bakhtin, The contraction mapping principle in almost metric space, Funct. Anal. Gos. Ped. Inst. Unianowsk,
30 (1989) 26-37.
[3] M. Boriceanu and M. Bota and A. Petrusel, Mutivalued fractals in b-metric spaces, Cent. Eur. J. Math. 8 (2010)
367–377.
[4] S. Chaipornjareansri and J.Nantadilok, Some best proximity point results for MT-rational cyclic contractions, J.
Math. Anal. 10(6) (2019) 9–22.
[5] W. S. Du, Some new results and generalizations in metric fixed point theory, Nonlinear Anal. Theo. Meth. Appl.
73(5) (2010) 1439–1446.
[6] W. S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, Topol. Appl. 159(1)
(2012) 49–56.
[7] A. A. Eldred and W. A. Kirk, and P.Veeramani, Proximal normal structure and relatively nonexpansive mappings,
Studia Math. 171(3) (2005) 283–293.
[8] A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323
(2006) 1001–1006.
[9] H. Faraji and D. Savic and S. Radenovic, Fixed point theorems for Geraghty contraction type mappings in b-metric
spaces and applications, Axioms, 8 (2019) 484–490.
[10] N. Hussain and A. Latif and P. Salimi , Best proximity point results in G-metric spaces, Abst. Appl. Anal. 2014
(2014) 837–943.
[11] E. Karapınar, J. M. Erhan and A. Yildiz Ulus, Fixed point theorem for cyclic maps on partial metric space, Appl.
Math. Inf. Sci. 1 (2012) 239–244.
[12] W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions,
Fixed Point Theo. 4(1) (2003) 79–89.
[13] W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Berlin, 2014.
[14] I. J. Lin and H. Lakzian and Yi. Chou, On best proximity point theorems for new cyclic maps, Int. Math. Forum,
73(7) (2012) 1839–1840.
[15] I. J. Lin and H. Lakzian and Yi. Chou, On convergence theorems for nonlinear mappings satisfying the MT − C
conditions, Appl. Math. Sci. 67(6) (2012) 3329–3337.
[16] J. Nantadilok, Best proximity point results in S-metric spaces, Int. J. Math. Anal. 10(27) (2016) 1333–3346.
[17] S. Sadiq Basha, Best proximity points:global optimal approximate solution, J. Global Optim. 49 (2010) 15—21.