Fixed points of a new class of compatible mappings satisfying an implicit relation via inverse $C$-lass function

Document Type : Research Paper

Authors

1 Department of Humanities and Basic Sciences, Manipur Institute of Technology, A Constituent College of Manipur University, Takyelpat-795004, Manipur, India

2 Department of Basic Sciences and Humanities, Manipur Institute of Technology, A constituent college of Manipur University, Takelpat 795004, Manipur, India

Abstract

In this paper, we establish some common fixed point theorems of a new class of compatible mappings satisfying an implicit relation via inverse $C$-class function.

Keywords

[1] M. Akkouchi, Common fixed point for weakly compatible maps satisfying implicit relations without continuity,
Demonstratio Math. 44(1) (2011) 151–158..
[2] M. A. Al-Thagafi and N. Shahzad, Generalized I-nonexpansive selfmaps and invariant approximations, Acta
Math. Sinica 24(5) (2008) 287–296.
[3] A. H. Ansari, Note on ϕ-ψ contractive type mappings and related fixed point, The 2nd regional conference on
Mathematics and Applications, Payame Noor University, 2014, pp. 377–380.
[4] A. H. Ansari, V. Popa, Y. Mahendra Singh and M. S. Khan, Fixed point theorems of an implicit relation via
C-class function in metric spaces, J. Adv. Math. Stud. 13(1) (2020) 1–10.
[5] S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund.
Math. 3 (1922) 133–181.
[6] J. Daneˇs, Two fixed point theorems in topological and metric spaces, Bull. Aust. Math. Sic. 14 (1976) 259–265.
[7] A. Djoudi, A unique common fixed point for compatible mappings of type (B) satisfying an implicit relation,
Demonstratio Math. 36(3)(2003) 763–770.
[8] A. Djoudi, General fixed point theorems for weakly compatible maps, Demonstratio Math. 38(1) (2005) 197–205.
[9] G. Jungck, Commuting mappings and fixed points, Amer. Math. Month. 83 (1976) 261–263.
[10] G. Jungck, compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9(4) (1986) 771–779.
[11] G. Jungck, P. P. Murthy and Y. J. Cho, Compatible mappings of type (A) and common fixed points, Math. Japon.
36(2) (1993) 381–390.
[12] G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl.
Math. 29(3) (1998) 227–238.
[13] M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust.
Math. Soc. 30(1) (1981) 1–9.
[14] M. K. Jain, E. Karapinar, Haseen Aydi and R. P. Agarwal, ST -compatibility and fixed point theorems via inverse
C-class functions, Dyn. Syst. Appl. Accepted.
[15] H. K. Pathak, S. S. Chang and Y. J. Cho, Fixed point theorems for compatible mappings of type (P), Indian J.
Math. 36(2) (1994) 151–166.
[16] H. K. Pathak, Y. J. Cho, S. M. Kang and B. Madharia, Compatible mappings of type (C) and common fixed point
theorem Greguˇs type, Demonstratio Math. 31(3) (1998) 499–517.
[17] H. K. Pathak and M. S. Khan, Compatible mappings of type (B) and common fixed point theorems of Greguˇs
type, Czechoslovak Math. J. 45(120) (1995) 685–698.
[18] H. K. Pathak and M. S. Khan, A comparison of various types of compatible maps and common fixed points, Indian
J. Pure Appl. Math. 28(4) (1997) 477–485.
[19] N. Saleem, A. H. Ansari and M. K. Jain, Some fixed point theorems of inverse C-class function under weak semi
compatibility, J. Fixed Point Theo. 9 (2018) 1–23.
[20] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32
(1982) 149–153.
[21] M. R. Singh and Y. Mahendra Singh, Compatible mappings of type (E) and common fixed point theorems of
Meir-Keeler type, Int. J. Math. Sci. Engg. Appl. 1(2)(2007) 299—315.
[22] M. R. Singh and Y. Mahendra Singh, On various types of compatible maps and common fixed point theorems for
non-continuous maps, Hacet. J. Math. Stat. 40(4) (2011) 503–513.
Volume 12, Issue 2
November 2021
Pages 1425-1440
  • Receive Date: 02 June 2020
  • Revise Date: 24 July 2020
  • Accept Date: 28 July 2020