[1] N. Abed, A. Shanan, H. A. Lafta and S. Z. Al Rashid, Bacteria taxonomic classification using machine-learning
models, Solid State Tech. 64 (2021) 1091–1112.
[2] S. Aggarwal, Using Mutual Information for extracting Biclusters from Gene Expression Data, New Delhi, 2013.
[3] A.K. Al-Mashanji and S.Z. Al-Rashi, Computational Methods for Preprocessing and Classifying Gene Expression
Data- Survey, 4th Sci. Int. Conf. Najaf, SICN 2019, March (2020) 121–126.
[4] S.Z. Al-Rashid and N.H. Al-Aaraji, Bayesian Models with Coregionalization to Model Gene Expression Time
Series for Mouse Model for Speed Progression of ALS Disease, Eur. J. Sci. Res. 1 (2015) 1–20.[5] J. R. Cole et al., The Ribosomal database project: Improved alignments and new tools for rRNA analysis, Nucleic
Acids Res. 1 (2009) 141-–145.
[6] M. El Kourdi, A. Bensaid and T. Rachidi, Automatic Arabic document categorization based on the Na¨ıve Bayes
algorithm, Proc. Workshop on Comput. Approaches to Arabic Script-based Languages, (2004) 51–58.
[7] K. Eschke, J. Trimpert, N. Osterrieder and D. Kunec, Attenuation of a very virulent Marek’s disease herpesvirus
(MDV) by codon pair bias deoptimization, PLoS Pathog. 14 (2018) 1-–24.
[8] A. Fiannaca et al., Deep learning models for bacteria taxonomic classification of metagenomic data, BMC Bioinf.
19 (2018) 61–76.
[9] G. Gamage, N. Gimhana, A. Wickramarachchi, V. Mallawaarachchi and I. Perera, Alignment-free whole genome
comparison using k-mer forests, 19th Int. Conf. Adv. ICT Emerg. Reg. ICTer 2019 - Proc. 2019.
[10] L. Y. Geer, N. Gimhana, A. Wickramarachchi, V. Mallawaarachchi, and I. Perera, The NCBI BioSystems
database, Nucleic Acids Res. 38 (2009) 492-–496.
[11] C. Gustafsson, S. Govindarajan, J. Minshull, and M. Park, Codon bias and heterologous protein expression.
[Trends Biotechnol. 2004]- PubMed result, Trends Biotechnol., 2004.
[12] S. J. Kho, M. L. Raymer, H. B. Yalamanchili, and A. P. Sheth, A novel approach for classifying gene expression
data using topic modeling, ACM-BCB 2017 - Proc. 8th ACM Int. Conf. Bioinformatics, Comput. Biol. Heal. Inf.
(2017) 388—393.
[13] J. M. Kirk et al., Functional classification of long non-coding RNAs by k-mer content, Nat. Genet. 10 (2018)
1474—1482.
[14] M. La Rosa, A. Fiannaca, R. Rizzo and A. Urso, Probabilistic topic modeling for the analysis and classification
of genomic sequences, BMC Bioinformatics, 6 (2015) 1-–9.
[15] P.A. Mundra and J.C. Rajapakse, Gene and sample selection using T-score with sample selection, J. Biomed. Inf.
59 (2016) 31—41.
[16] A. Nair, Computational biology & bioinformatics: a gentle overview, Commun. Comput. Soc. India 5 (2007)
1—13.
[17] S.C. Perry and R.G. Beiko, Distinguishing microbial genome fragments based on their composition: Evolutionary
and comparative genomic perspectives, Genome Biol. Evol. 2 (2010) 117—131.
[18] V.O. Polyanovsky, M.A. Roytberg and V.G. Tumanyan, Comparative analysis of the quality of a global algorithm
and a local algorithm for alignment of two sequences, Algorithms Mol. Biol. 6 (2011) 1—12.
[19] S. Ram´ırez-Gallego, B. Krawczyk, S. Garc´ıa, M. Wo´zniak and F. Herrera, A survey on data preprocessing for
data stream mining: Current status and future directions, Neurocom. 239 (2017) 39-–57.
[20] A. Sievers, F. Wenz, M. Hausmann and G. Hildenbrand, Conservation of k-mer composition and correlation
contribution between introns and intergenic regions of animalia genomes, Genes. (Basel) 9 (2018) 1—19.
[21] K. Simek et al., Using SVD and SVM methods for selection, classification, clustering and modeling of DNA
microarray data, Eng. Appl. Artif. Intell., 4 (2004) 417—427.
[22] G.Z. Valenci, M. Rubinstein, R. Afriat, Z.D. Shira Rosencwaig, E. Rorman and I. Nissan, Draft Genome Sequences of Cronobacter muytjensii Cr150 , Cronobacter turicensis Cr170, and Cronobacter sakazakii Cr611 Gal,
Microbiology Resource Announ. 9(44) (2020) 9—11.
[23] S. Vinga and J. Almeida, Alignment-free sequence comparison - A review, Bioinf. 4 (2003) 513-–523.
[24] M. Welch et al., Design parameters to control synthetic gene expression in Eschorichia coli, PLoS One, 9 (2009).
[25] R. Yin, Z. Luo and C. K. Kwoh, Alignment-free machine learning approaches for the lethality prediction of
potential novel human-adapted coronavirus using genomic nucleotide, bioRxiv, (2020) 1–18.