Parametric regression analysis of bivariate the proportional hazards model with current status data

Document Type : Research Paper


1 Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

2 Department of Pharmacognosy and Medicinal Plant, College of Pharmacy, University of Basrah, Basrah, Iraq


In this paper, we show the maximum sieved probability of each of the finite Dimensional parameters in a marginal Proportional Hazards risk model with bivariate current position data. We used the copula model to model the combined distribution of bivariate survival times. Simulation studies reveal that the proposed estimations for it have good finite sample properties.


[1] R. Balasubramanian and S. W. Lagakos, Estimating HIV incidence based on combined prevalence testing, Biomet.
66 (2010) 1–10.
[2] I. D. Diamond, and J. W. McDonald, The Analysis of Current Status Data. In Demographic Applications of
Event History Analysis, Oxford UK: Oxford University Press, 1991.
[3] I. D. Diamond, J. W. McDonald and I.H. Shah, Proportional hazards models for current status data: application
to the study of differentials in age at weaning in Pakistan, Demog. 23 (1986) 607–620.
[4] P.W.W. Gamage, Ch. S. McMahan, L. Wang and W. Tu, A gamma-frailty proportional hazards model for bivariate
interval-censored data, Comput. Stat. Data Anal. 128 (2018) 354–366.
[5] L. M. Grummer-Strawn, Regression analysis of current status data: an application to breast-feeding, J. Amer.
Stat. Assoc. 88 (1993) 758–765.
[6] H. Li, Ch. Ma and ZJ. Sun, A vine copula approach for regression analysis of bivariate current status data with
informative censoring, J. Nonparametric Stat. 32(1) (2020) 185–200.
[7] N.P. Jewell, M. Van Der Laan and X. Lei Bivariate current status data with univariate monitoring times, Biomet.
92(4)(2005) 847–862.
[8] H. Liu and J. Qin, Semiparametric probit models with univariate and bivariate current-status data, Biomet. 74(1)
(2018) 68–76.
[9] S. Murphy, A.J. Rossini and A. W. van der Vaart, Maximum likelihood estimation in the proportional odds model,
J. Amer. Stat. Assoc. 92(439) (1997) 968–976.
[10] P. W. W. Gamage, M. Chaudari, Ch. S. McMahan, E. H. Kim and M.R. Kosorok, An extended proportional
hazards model for interval-censored data subject to instantaneous failures, Lifetime Data Anal. 26(1) (2020) 158–
[11] J. Sun, The Statistical Analysis of Interval-Censored Failure Time Data, Springer Science Business Media, 2007.
[12] H. Tao and S. Jianguo , Regression analysis of bivariate current status data under the proportional hazards model,
Canad. J. Stat. 45(4) (2017) 410–440.
[13] Y. Wu and Y. Zhang, Partially monotone tensor spline estimation of the joint distribution function with bivariate
current status data, Ann. Stat. 40(3) (2012) 1609–1636.
[14] Z. Zhang, J. Sun and L. Sun, Statistical analysis of current status data with informative observation times, Stat.
Med. 24 (2005) 1300–1407.
[15] Q. Zhou, T. Hu and J. Sun, A sieve semiparametric maximum likelihood approach for regression analysis of
bivariate interval-censored failure time data, J. Amer. Stat. Assoc. 112 (2017) 664–672.
Volume 12, Issue 2
November 2021
Pages 1591-1598
  • Receive Date: 15 April 2021
  • Revise Date: 22 May 2021
  • Accept Date: 18 June 2021