[1] M. A. Abdelkawy, S.S. Ezz-Eldien and A.Z.M. Amin, A Jacobi spectral collocation scheme for solving Abel’s
integral equations, Prog. Fract. Diff. Appl. 1 (2015) 187-–200.
[2] W. Abdul-Majid, Linear and Nonlinear Integral Equations Methods and Applications, Heidelberg Dordrecht
London New-York, Springer, 2011.
[3] M. R. Ali and M. M. Mousa, Solution of nonlinear Volterra integral equations with weakly singular kernel by using
the HOBW method, Adv. Math. Phys. 2019 (2019) 10 pages.
[4] M. Alipour and D. Rostamy, Bernstein polynomials for solving Abel’s integral equation, J. Math. Comput. Sci.
3(4) (2011) 403–412.
[5] Z. Avazzadeh, B. Shafiee and G.B. Loghmani, Fractional calculus for solving Abel’s integral equations using
Chebyshev polynomials, Int. J. Comput. Appl. 5 (2011) 2207–2216.
[6] R. Bairwa, A. Kumar and D. Kumar, An efficient computation approach for Abel’s integral equations of the second
kind, Sci. Tech. Asia. 25(1) (2020) 85–94.
[7] Sh. S. Behzadi, S. Abbasbandy and T. Allahviranlooa, Study on singular Integro-differential equation of Abel’s
type by iterative methods, J. Appl. Math. Inf. 31(3) (2013) 499–511.
[8] G.G. Bi¸cer, Y. Ozt¨urk and M. G¨ulsu, ¨ Numerical approach for solving linear Fredholm integro-differential equation
with piecewise intervals by Bernoulli polynomials, Int. J. Comput. Math. 95(10) (2018) 2100–2111.
[9] A. Da¸scioˇglu and S. Salinan, Comparison of the orthogonal polynomial solutions for fractional integral equations,
Math. 7(1) (2019).
[10] S. Hamdan, N. Qatanani and A. Daraghmeh, Numerical techniques for solving linear Volterra fractional integral
equation, J. Appl. Math. 2019(1) (2019).
[11] S. Jahanshahi, E. Babolian, D.F.M. Torres and A.Vahidi, Solving Abel integral equations of first kind via fractional
calculus, J. King Saud Univ. Sci. 27(2) (2015) 161–167.
[12] S. Karimi Vanani and F. Soleymani, Tau approximate solution of weakly singular Volterra integral equations,
Math. Comput. Model. 57(3-4) (2013) 494–502.
[13] A. Kurt, S. Yal¸cınba¸s and M. Sezer, Fibonacci collocation method for solving high-order linear Fredholm Integrodifferential equations, Int. J. Math. Math. Sci. 18(3) (2013) 448–458.
[14] C. Li, Changpin Li and K. Clarkson, Several results of fractional differential and integral equations in distribution,
Math. 6(6) (2018) 1–19.
[15] C. Li and K. Clarkson, Babenko’s approach to Abel’s integral equations, Math. 6(3) (2018) 1-15.
[16] C. Li, C. Li P., B. Kacsmar, R. Lacroix and K. Tilbury, The Abel integral equations in distributions, Adv. Anal.
2(2) (2017) 88-–104.
[17] K. Maleknejad, E. Hashemizadeh and R. Ezzati, A new approach to the numerical solution of Volterra integral
equations by using Bernstein’s approximation, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 647-–655.
[18] R. Maurya, V. Devi, N. Srivastava and V. Singh, An efficient and stable Lagrangian matrix approach to Abel
integral and integro differential equations, Appl. Math. Comput. 374 (2020) 1–30.
[19] R. A. Mundewadi and S. Kumbinarasaiah, Numerical solution of Abel’s integral equations using hermite wavelet,
Appl. Math. Nonlinear Sci. 4(2) (2019) 395–406.
[20] A. Nazir, M. Usman, S.T. Mohyud-din, Touchard polynomials method for integral equations, Int. J. Modern Theo.
Phys. 3(1) (2014) 74–89.
[21] S. Noeiaghdam, E. Zarei and H. Kelishami, Homotopy analysis transform method for solving Abel’s integral
equations of the first kind, Ain Shams Engin. J. 7(1) (2016) 483–495.
[22] R. K. Pandey, Sh. Sharma and K. Kumar. Collocation method for generalized Abel’s integral equations, J. Comput.
Appl. Math. 302 (2016) 118–128
[23] R. K. Pandey, O.P. Singh and V.K. Singh, Efficient algorithms to solve singular integral equations of Abel type,
Comput. Math. Appl. 57 (2009) 664–676.
[24] R.B. Paris, The asymptotes of the Touchard polynomials: a uniform approximation, Math. Aeterna. 6(5) (2016)
765–779.
[25] M A. Rahman, M.S. Islam and M. M. Alam, Numerical solutions of Volterra integral equations using Laguerre
polynomials. J. Sci. Res. 4(2) (2012) 357–364.[26] A. Saadatmandi and M. Dehghan, A collocation method for solving Abel’s integral equations of first and second
kinds, Z. Naturforsch. A 63 (2008) 752—756.
[27] M.R.A. Sakran, Numerical solutions of integral and integro-differential equations using Chebyshev polynomials of
the third kind, Appl. Math. Comput. 351 (2019) 66–82.
[28] K. K. Singh, R. K. Pandey, B. N. Mandal and N. Dubey, An analytical method for solving integral equations of
abel type, Procedia Engin. 38 (2012) 2726–2738.
[29] O.P. Singh, V.K. Singh and R.K. Pandey, A stable numerical inversion of Abel’s integral equation using almost
Bernstein operational matrix, J. Quant. Spect. Radiative Trans. 111(1) (2010) 245–252.
[30] S. Sohrabi, Comparison Chebyshev wavelets method with BPFs method for solving Abel’s integral equation, Ain
Shams Engin. J. 2 (2011) 249—254.
[31] C. Yang, An efficient numerical method for solving Abel integral equation, Appl. Math. Comput. 227 (2014)
656-–661.
[32] J. Talab Abdullah, Approximate numerical solutions for linear Volterra integral equations using Touchard polynomials, Baghdad Sci. J. 17(4) (2020) 1241–1249.
[33] J. Talab Abdullah and H.S. Ali, Laguerre and Touchard polynomials for linear Volterra integral and Integro
differential equations, J. Phys. Conf. Series. 1591 (2020) 012047.
[34] Gh. Yasmin, Some identities of the Apostol type polynomials arising from Umbral calculus, PJM. 7(1) (2018)
35–52.
[35] S.A. Yousefi, Numerical solution of Abel’s integral equation by using Legendre wavelets, Appl. Math. Comput.
175 (2006) 574-–580.
[36] S.A. Yousefi, B-Polynomial multiwavelets approach for the solution of Abel’s integral equation, Int. J. Comput.
Math. 87 (2010) 310-–316.
[37] E. Zarei and S. Noeiaghdam, Solving generalized Abel’s integral equations of the first and second kinds via Taylor
collocation method, arXiv:1804.08571.
[38] L. Zhang, J. Huang, Y. Pan and X. Wen, A Mechanical Quadrature Method for Solving Delay Volterra Integral
Equation with Weakly Singular Kernels, Complex. 16 (2019) 1–12.