[1] D. Boularas, A new classification of planar homogeneous quadratic systems, Qual. Theory Dyn. Syst. 2(1) (2001)
93–110.
[2] T. Date, Classification and analysis of two-dimensional real homogeneous quadratic differential equation systems,
J. Diff. Equ. 32(3) (1979) 311–334.
[3] J. Llibre, J. S. P. del Rio and J. A. Rodr´ıguez, Structural stability of planar homogeneous polynomial vector fields:
applications to critical points and to infinity, J. Diff. Equ. 125(2) (1996) 490–520.
[4] L.S. Lyagina, The integral curves of the equation y
′ = ax2 + bxy + cy2dx2 + exy + fy2
, Uspekhi Mat. Nauk 6(2)
(1951) 171–183.
[5] L. Markus, Quadratic differential equations and non-associative algebras, Ann. Math. Stud. 45(5) (1960) 185–213.
[6] M. Nadjafikhah and M. Mirafzal, Classification the integral curves of a second degree homogeneous ODE, Math.
Sci. 4(4) (2010) 371–381.
[7] C.S. Sibirskii, Algebraic Invariants of Differential Equations and Matrices, Schtiintsa, Kishinev, Moldova (in
Russian), 1976.
[8] C.S. Sibirskii, Introduction to The Algebraic Theory of Invariants of Differential Equations, Nonlinear Science,
Theory and Applications, Manchester University Press, 1988.
[9] Z. Zhi-Fen, D. Tong-Ren, H. Wen-Zao and D. Zhen-Xi, Qualitative Theory of Differential Equations, American
Mathematical Soc. 2006.