[1] M. M. Abdulkadhim and H. F. Al-Husseiny, The stability analysis of the diseased predator-prey model incorporating
migration in the contaminated environment, J. Phys. Conf. Ser. 2021 pp.1–23.
[2] H Ali and A. N. Mustafa, Analysis of a mathematical model in a food web system containing scavenger species,
J. Univ. Babylon Pure Appl. Sci. 27 (2019) 1–15.
[3] R.M. Anderson and R.M. May, Regulation and stability of host-parasite population interactions: I. Regulatory
processes, J. Animal Eco. 47 (1978) 219–247.[4] C. Arancibia-Ibarra, The basins of attraction in a modified may-holling-tanner predator-prey model with allee
effect, Nonlinear Analysis, 185 (2019) 15-28.
[5] S. Gakkhar and R.K. Naji., On a food web consisting of a specialist and a generalist predator, J. Bio. Syst. 11
(2003) 365–376.
[6] R.P. Gupta and P. Chandra, Dynamical properties of a prey-predator-scavenger model with quadratic harvesting,
Commun. Nonlinear Sci. Numerical Sim. 49 (2017) 202–214.
[7] K.P. Hadeler and H. I. Frerdman, Predator-prey populations with parasitic infection, J. Math. Biol. 27 (1989)
609-631.
[8] M. Haque and E. Venturino, The effect of communicable disease in Leslie-Gower predator-prey model, J. Bio.
Syst. 163 (2008) 425–444.
[9] M. Haque, J. Zhen and E. Venturino, Rich dynamics of Lotka-Volterra type predator prey model system with viral
disease in prey species, Math. Meth. Appl. Sci. 32 (2009) 875–898.
[10] M. Haque, A predator-prey model with disease in the predator species only, Nonlinear Anal. Real World Appl. 11
(2010) 2224–2236.
[11] M. Haque, S. Sarwardi, S. Preston and E. Venturino, Effect of delay in a Lotka Volterra type predator-prey model
with a transmissible disease in the predator species, Math. Biosci. 234 (2011) 47-57.
[12] E.J. Jansen and A.R. Van Gorder, Dynamics from a predator-prey-quarry-resource-scavenger model, Theo. Eco.
J. 11 (2018) 19–38.
[13] Y. Kang, A two-patch prey-predator model with predator dispersal driven by the predation strength, Math. Biosci.
14 (2017) 843–880.
[14] S. Kant, V. Kumar, Stability analysis of predator-prey system with migrating prey and disease infection in both
species, Appl. Math. Model. 42 (2017) 509–539.
[15] S. Kumar and H. Kharbanda, Stability analysis of prey-predator model with infection, migration and vaccination
in prey, arXiv preprint, arXiv:1709.10319, (2017) 1–27.
[16] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics, part i., Proc. Royal
Soc. Edinburgh Section A. Math. 115 (1927) 700-721.
[17] A. A. Mohsen and I. A. Aaid, Stability of a prey-predator model with SIS epidemic disease in predator involving
holling type II function response, IOSR J. Math. 11 (2015) 38-53.
[18] R. K. Naji and H. F. Ridha, The dynamics of a prey-predator model incorporating svis-type of disease in prey, J.
Math. 12 (2016) 90-101.
[19] R.K. Naji and A. N. Mustafa, The dynamics of an eco-epidemiological model with nonlinear incidence rate, J.
Appl. Math. 2012 (2012) 1–25.
[20] P. Panja, Prey-predator-scavenger model with Monod-Haldane type functional response, Rend. del Circ. Mate.
Palermo Ser. 2, 2 (2020) 1205-1219.
[21] C. V. Pavan Kumar , K. Shiva Reddy and M. A. S. Srinivas, Dynamics of prey predator with Holling interactions
and stochastic influences, 57 (2018) 1079-1086.
[22] H. A. Satar and R. K. Naji, Stability and bifurcation of a prey-predator-scavenger model in the existence of
toxicant, Int. J. Math. Math. Sci. 2019 (2019) 1–17.
[23] S. Slimani, P. Raynaud and I. Boussaada, Dynamics of a prey-predator system with modified Leslie-Gower and
Holling type II schemes incorporating a prey refuge, Amer. Inst. Math. Sci. 24 (2019) 5003–5039.
[24] A. Suryanto and I. Darti, Stability analysis and nonstandard grunwald-letnikov scheme for a fractional order
predator-prey model with ratio-dependent functional response, AIP Conference Proceedings, 2017, pp. 1–6.
[25] Y. Xiao and L. Chen, A ratio-dependent preydator-prey model with disease in the prey, Appl. Math. Comput. 131
(2002) 397–414.