[1] T.O. Alakoya, L.O. Jolaoso and O.T. Mewomo, A self adaptive inertial algorithm for solving split variational
inclusion and fixed point problems with applications, J. Ind. Manag. Optim. (2020), DOI:10.3934/jimo.2020152.
[2] T.O. Alakoya, L.O. Jolaoso and O.T. Mewomo, Strong convergence theorems for finite families of pseudomonotone
equilibrium and fixed point problems in Banach spaces, Afr. Mat. (2020), DOI:10.1007/s13370-020-00869-z.
[3] T.O. Alakoya, L.O. Jolaoso and O.T. Mewomo, Two modifications of the inertial Tseng extragradient method with
self-adaptive step size for solving monotone variational inequality problems, Demonstr. Math. 53 (2020) 208—224.
[4] T.O. Alakoya, L.O. Jolaoso, A. Taiwo and O.T. Mewomo, Inertial algorithm with self-adaptive stepsize for split
common null point and common fixed point problems for multivalued mappings in Banach spaces, Optim. (2021),
DOI: 10.1080/02331934.2021.1895154.
[5] T.O. Alakoya, A. Taiwo, O.T. Mewomo and Y.J. Cho, An iterative algorithm for solving variational inequality,
generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings,
Ann. Univ. Ferrara Sez. VII Sci. Mat. 67(1) (2021) 1–31.
[6] M. Arshad, M. Abbas, A. Hussain and N. Hussain, Generalized dynamic process for generalized (f, L)-almost
F-contraction with applications, J. Nonlinear Sci. Appl. 9 (2016) 1702–1715.
[7] C.T. Aage and J.N. Salunke, Fixed points for weak contractions in G-metric spaces, Appl. Math. E-Notes. 12
(2012) 23–28.
[8] T. Abdeljawad and D. Baleanu Integration by parts and its applications of a new nonlocal fractional derivative
with Mittag–Leffler nonsingular kernel, J. Nonlinear Sci. Appl. 10(3) (2017) 1098–107 .
[9] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernal, Thermal Sci. 20(2)
(2016) 757–763.
[10] G.V.R. Babu and T.M. Dula, Fixed points of generalized TAC-contractiv mappings in b-metric spaces, Mat.
Vesnik 69(2) (2017) 75–88.
[11] G.V.R. Babu and P.D. Sailaja, A fixed point theorem of generalized weakly contractive maps in orbitally complete
metric spaces, Thai J. Math. 9(1) (2011) 1–10.
[12] S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math.
3 (1922) 133–181.
[13] R. Baskaran and P.V. Subrahmanyam, A note on the solution of a class of functional equations, Appl. Anal. 22
(1986), 235–241.
[14] R. Bellman and E.S. Lee, Functional equations in dynamic programming, Aequat. Math. 17 (1978) 1–18.
[15] V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum 9
(2004) 43–53.
[16] V. Berinde, General constructive fixed point theorem for Ciric-type almost contractions in metric spaces, Carpath.
J. Math. 24 (2008) 10–19.
[17] M. Boriceanu, M. Bota and A. Petrusel, Mutivalued fractals in b-metric spaces, Cent. Eur. J. Math. 8 (2010)
367–377.
[18] S. Chandok, K. Tas and A.H. Ansari, Some fixed point results for TAC-type contractive mappings, J. Function
Spaces 2016, Article ID 1907676, 1–6.
[19] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993) 5–11.
[20] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena.
46(2) (1998) 263–276.
[21] J.N. Ezeora, C. Izuchukwu, A.A. Mebawondu and O.T. Mewomo, Approximating Common Fixed Point of Mean
Nonexpansive Mappings in hyperbolic spaces, Int. J. Nonlinear Anal. Appl. 12 (1) (2021) 231–244.[22] N. Hussain, M.A. Kutbi and P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstr.
Appl. Anal. 2014 (2014) Art. ID 280817.
[23] L.O. Jolaoso, F.U. Ogbuisi and O.T. Mewomo, On split equality variation inclusion problems in Banach spaces
without operator norms, Int. J. Nonlinear Anal. Appl. (2021), accepted, to appear.
[24] A. Kilbas, H.M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North
Holland Math Stud 2006.
[25] D. Klim and D. Wardowski, ixed points of dynamic processes of set-valued F-contractions and application to
functional equations, Fixed Point Theory Appl. 2015 (2015) 1–9.
[26] A.A. Mebawondu, C. Izuchukwu, K.O. Aremu and O.T. Mewomo, On some fixed point results for (α, β)-Berindeφ-Contraction mapppings with applications, Int. J. Nonlinear Anal. Appl. 11 (2) (2020) 363–378.
[27] A.A. Mebawondu and O.T. Mewomo, Some convergence results for Jungck-AM iterative process in hyperbolic
spaces, Aust. J. Math. Anal. Appl. 16(1) (2019) Art. 15.
[28] A.A. Mebawondu and O.T. Mewomo, Some fixed point results for TAC-Suzuki contractive mappings, Commun.
Korean Math. Soc. 34(4) (2019) 1201-1222.
[29] A. A. Mebawondu and O.T. Mewomo, Suzuki-type fixed point results in Gb-metric spaces, Asian-Eur. J. Math.
(2020), DOI: 10.1142/S1793557121500704.
[30] G.N. Ogwo, C. Izuchukwu, K.O. Aremu and O.T. Mewomo, A viscosity iterative algorithm for a family of
monotone inclusion problems in an Hadamard space, Bull. Belg. Math. Soc. Simon Stevin, 27 (2020) 127–152.
[31] G.N. Ogwo, C. Izuchukwu, K.O. Aremu and O.T. Mewomo, On θ-generalized demimetric mappings and monotone
operators in Hadamard spaces, Demonstr. Math. 53(1) (2020) 95–111.
[32] M.A. Olona, T.O. Alakoya, A. O.-E. Owolabi and O.T. Mewomo, Inertial shrinking projection algorithm with selfadaptive step size for split generalized equilibrium and fixed point problems for a countable family of nonexpansive
multivalued mappings, Demonstr. Math. (2021), DOI:10.1515/dema-2021-0006
[33] M.A. Olona, T.O. Alakoya, A. O.-E. Owolabi, O.T. Mewomo, Inertial algorithm for solving equilibrium, variational inclusion and fixed point problems for an infinite family of strictly pseudocontractive mappings, J. Nonlinear
Funct. Anal. 2021 (2021) Art. 10.
[34] A. O.-E. Owolabi, T.O. Alakoya, A. Taiwo and O.T. Mewomo, A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings, Numer.
Algebra Control Optim. (2021) DOI:10.3934/naco.2021004.
[35] O.K. Oyewole, C. Izuchukwu, C.C. Okeke and O.T. Mewomo, Inertial approximation method for split variational
inclusion problem in Banach spaces, Int. J. Nonlinear Anal. Appl. 11(2) (2020) 285–304.
[36] O.K. Oyewole, O.T. Mewomo, L.O. Jolaoso and S.H. Khan, An extragradient algorithm for split generalized
equilibrium problem and the set of fixed points of quasi-φ-nonexpansive mappings in Banach spaces, Turkish J.
Math. 44(4) (2020) 1146-–1170.
[37] A. Pansuwon, W. Sintunavarat, V. Parvaneh and Y.J. Cho, Some fixed point theorems for (α, θ, k)-contractive
multi-valued mappings with some applications, Fixed Point Theory Appl. 2015 (2015) Art. 132.
[38] H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed
Point Theory Appl. 2014 (2014) Art. 210.
[39] Z. Qingnian and S. Yisheng, Fixed point theory for generalized ϕ-weak contractions, Appl. Math. Lett. 22(1)
(2009) 75–78.
[40] J. R. Roshan, V. Parvaneh and Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings
in ordered b-metric spaces, J. Nonlinear Sci. Appl. 7 (2014) 229–245.
[41] P. Salimi and V. Pasquale, A result of Suzuki type in partial G-metric spaces, Acta Math. Sci. Ser. B (Engl. Ed.).
34(2) (2014) 274–284.
[42] S. G. Samko, A. A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications,,
Yverdon: Gordon and Breach, 1993 .
[43] N. A. Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory Appl. 2013 (2013)
Art. 227.
[44] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math.
Anal. Appl. 340 (2)(2008) 1088–1095.
[45] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. 71 (11) (2009) 5313–5317.
[46] A. Taiwo, T.O. Alakoya and O.T. Mewomo, Strong convergence theorem for solving equilibrium problem and fixed
point of relatively nonexpansive multi-valued mappings in a Banach space with applications, Asian-Eur. J. Math.
(2020), DOI:10.1142/S1793557121501370.
[47] A. Taiwo, T.O. Alakoya, O.T. Mewomo, Halpern-type iterative process for solving split common fixed point and
monotone variational inclusion problem between Banach spaces, Numer. Algor. 86(1) (2021) 1359-–1389.[48] M. Turinici, A Wardowski implicit contractions in metric spaces, (2013) arXiv:1212.3164v2 [Math.GN].
[49] D. Wardowski, Solving existence problems via F-contractions, Proc. Amer. Math. Soc. 146(4) (2018), 1585–1598.
[50] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory
Appl. 2012 (2012) Art. 94.
[51] O. Yamaoda and W. Sintunavarat, Fixed point theorems for (α, β) − (ψ, φ)-contractive mappings in b-metric
spaces with some numerical results and applications, J. Nonlinear Sci. Appl. 9 (2016) 22–33.