On split equality variation inclusion problems in Banach spaces without operator norms

Document Type : Research Paper

Authors

1 University of KwaZulu-Natal

2 University of KwaZulu-Natal University Road Westville Durban South Africa

Abstract

The purpose of this paper is to study the approximation of solutions of split equality variational inclusion problem in uniformly convex Banach spaces which are also uniformly smooth. We introduce an iterative algorithm in which the stepsize does not require prior knowledge of operator norms. This is very important in practice because norm of operators that are often involved in applications are rarely known explicitly. We prove a strong convergence theorem for the approximation of solutions of split equality variational inclusion problem in $p$-uniformly convex Banach spaces which are also uniformly smooth. Further, we give some applications and a numerical example of our main theorem to show how the sequence values affect the number of iterations. Our results improve, complement and extend many recent results in literature.

Keywords

[1] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, A self adaptive inertial algorithm for solving split variational inclusion
and fixed point problems with applications, J. Ind. Manag. Optim., (2020), doi:10.3934/jimo.2020152.
[2] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, Two modifications of the inertial Tseng extragradient method with
self-adaptive step size for solving monotone variational inequality problems, Demonstr. Math., 53, (2020),208-
–224.
[3] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization, (2020),
DOI:10.1080/02331934.2020.1723586.
[4] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, Strong convergence theorems for finite families of pseudomonotone
equilibrium and fixed point problems in Banach spaces, Afr. Mat., (2021), DOI:10.1007/s13370-020-00869-z.
[5] T.O. Alakoya, A. Taiwo, O.T. Mewomo, Y.J. Cho, An iterative algorithm for solving variational inequality,
generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings,
Ann. Univ. Ferrara Sez. VII Sci. Mat. (2020) DOI: 10.1007/s11565-020-00354-2.
[6] T.O. Alakoya, A. Taiwo, O.T. Mewomo, On system of split generalised mixed equilibrium and fixed point problems
for multivalued mappings with no prior knowledge of operator norm, Fixed Point Theory, (2020), (accepted, to
appear).
[7] Y.I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications in Theory
and Applications of Nonlinear Operators of Accretive and Monotone type, Lecture Notes in Pure and Applied
Mathematics, Dekker, New York, NY,USA, Vol. 178,(1996), 15-50,
[8] K. O. Aremu, H. A. Abass, C. Izuchukwu and O. T. Mewomo, A viscosity-type algorithm for an infinitely countable
family of (f, g)-generalized k-strictly pseudononspreading mappings in CAT(0) spaces, Analysis, 40 (1), (2020),
19–37.
[9] K.O. Aremu, C. Izuchukwu, G.N. Ogwo, O.T. Mewomo, Multi-step Iterative algorithm for minimization and fixed
point problems in p-uniformly convex metric spaces, J. Ind. Manag. Optim., (2020), DOI:10.3934/jimo.2020063.
[10] V. Barbu, T. Precupanu, Convexity and Optimization in Banach spaces, Spinger Monographs in Mathematics,
(2012), DOI:10.1007/978-94-007-2247-7-2.
[11] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63,
(1994), 123–145.
[12] J.Y. Bello Cruz and Y. Shehu, An iterative method for split inclusion problems without prior knowledge of operator
norms, J. Fixed Point Theory Appl., 19 (3), (2017), 2017-–2036.
[13] C. Bryne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for the split common null
point problem, J. Nonlinear Convex Anal., 13 (2012), 759–775.
[14] Y. Censor, A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory Appl.,
34, (1981), 321–353.
[15] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8, (1994), 221–239.
[16] Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms,
59 (2), (2012), 301–323.
[17] H. Dehghan, C. Izuchukwu, O.T. Mewomo, D.A. Taba, G.C. Ugwunnadi, Iterative algorithm for a family of
monotone inclusion problems in CAT(0) spaces, Quaest. Math., 43 (7), (2020), 975-–998.
[18] A. Gibali, L.O. Jolaoso, O.T. Mewomo, A. Taiwo, Fast and simple Bregman projection methods for solving
variational inequalities and related problems in Banach spaces, Results Math., 75, (2020), Art. No. 179, 36 pp.
[19] E.C. Godwin, C. Izuchukwu, O.T. Mewomo, An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces, Boll. Unione Mat. Ital., (2020), DOI 10.1007/s40574-020-00.
[20] K. Goebel, S. Reich, Uniformly convexity, Hyperbolic Geometry and Nonexpansive mappings, Marcel Dekker,
New York, NY, USA, (1984).
[21] H. Guo, H. He and R. Chen, Convergence theorems for the split equality variational inclusion problem and fixed
point problem in Hilbert spaces, Fixed Point Theory and Appl., 2015 (2015), Art. ID 223.
[22] J.M. Hendrickx, A. Olshevsky, Matrix P-Norms are NP-Hard to approximate if p = 1, 2, ∞, SIAM J. Matrix
Anal. Appl., 31 (2012), 2802–2812.
[23] C. Izuchukwu, A.A. Mebawondu, O.T. Mewomo, A New Method for Solving Split Variational Inequality Problems
without Co-coerciveness, J. Fixed Point Theory Appl., (2020), 22 (4), (2020), Art. No. 98, 23 pp.
[24] C. Izuchukwu, G.N. Ogwo, O.T. Mewomo, An Inertial Method for solving Generalized Split Feasibility Problems over the solution set of Monotone Variational Inclusions, Optimization, (2020), DOI
10.1080/02331934.2020.1808648.[25] C. Izuchukwu, C. C. Okeke, O. T. Mewomo, Systems of Variational Inequalities and multiple-set split equality
fixed point problems for countable families of multivalued type-one demicontractive-type mappings, Ukra¨ın. Mat.
Zh., 71 (11), (2019), 1480–1501.
[26] L.O. Jolaoso, T.O. Alakoya, A. Taiwo and O.T. Mewomo, Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space, Optimization, (2020),
DOI:10.1080/02331934.2020.1716752.
[27] L.O. Jolaoso, K.O. Oyewole, K.O. Aremu, O.T. Mewomo, A new efficient algorithm for finding common fixed
points of multivalued demicontractive mappings and solutions of split generalized equilibrium problems in Hilbert
spaces, Int. J. Comput. Math., (2020), https://doi.org/10.1080/00207160.2020.1856823.
[28] L.O. Jolaoso, A. Taiwo, T.O. Alakoya, O.T. Mewomo, A unified algorithm for solving variational inequality and
fixed point problems with application to the split equality problem, Comput. Appl. Math., 39 (1), (2020), Art. No.
38, 28 pp.
[29] L.O. Jolaoso, A. Taiwo, T.O. Alakoya, O.T. Mewomo, Strong convergence theorem for solving pseudo-monotone
variational inequality problem using projection method in a reflexive Banach space, J. Optim. Theory Appl., 185
(3), (2020), 744–766.
[30] K.R. Kazmi, S.H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a
nonexpansive mapping, Optim. Lett., 8 (3) (2014), 1113-–1124.
[31] S.H. Khan, T.O. Alakoya, O.T. Mewomo, Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings
in Banach spaces, Math. Comput. Appl., 25, (2020), Art. 54.
[32] B. Martinet, Regularisation d’inequation variationelles par approximations successives, Rev. Francaise inf. Rech.
Oper., (1970), pp. 154-159.
[33] A. Moudafi, A relaxed alternating CQ algorithm for the split feasibility problems, Nonlinear Anal., 79, (2013),
117–121.
[34] A. Moudafi, Split Monotone variational inclusion problem, J. Optim. Theory Appl., 150, (2011), 275–283.
[35] A. Moudafi, E. Al-Shemas, Simultaneous iterative methods for split equality problems and applications, Trans.
Math. Prog. Appl., 1, (2013), 1–11.
[36] G. N. Ogwo, C. Izuchukwu, K.O. Aremu, O.T. Mewomo, A viscosity iterative algorithm for a family of monotone
inclusion problems in an Hadamard space, Bull. Belg. Math. Soc. Simon Stevin, 27, (2020), 127–152.
[37] G. N. Ogwo, C. Izuchukwu, K.O. Aremu, O.T. Mewomo, On θ-generalized demimetric mappings and monotone
operators in Hadamard spaces, Demonstr. Math., 53 (1), (2020), 95-–111.
[38] G. N. Ogwo, C. Izuchukwu, O.T. Mewomo, Inertial methods for finding minimum-norm solutions of the split
variational inequality problem beyond monotonicity, Numer. Algorithms, (2021), (accepted, to appear).
[39] A. O.-E. Owolabi, T.O. Alakoya, A. Taiwo, O.T. Mewomo, A new inertial-projection algorithm for approximating
common solution of variational inequality and fixed point problems of multivalued mappings, Numer. Algebra
Control Optim., (2021) DOI:10.3934/naco.2021004.
[40] O.K. Oyewole, H.A. Abass, O.T. Mewomo, A Strong convergence algorithm for a fixed point constrainted split
null point problem, Rend. Circ. Mat. Palermo II, (2020), DOI:10.1007/s12215-020-00505-6.
[41] K.O. Oyewole, C. Izuchukwu, C.C. Okeke, O.T. Mewomo, Inertial approximation method for split variational
inclusion problem in Banach spaces, Int. J. Nonlinear Anal. Appl., 11 (2), (2020), 285–304.
[42] K.O. Oyewole, O.T. Mewomo, L.O. Jolaoso and Safeer H. Khan, An extragradient algorithm for split generalized
equilibrium problem over the set of fixed points of quasi-phi-nonexpansive mappings in Banach spaces, Turkish J.
Math., 44 (4), (2020), 1146–1170.
[43] S. Reich and S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive
Banach spaces, Nonlinear Anal., 73 (1) (2010) 122–135.
[44] S. Reich, S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer.
Funct. Anal. Optim., 31 (1-3) (2010), 22–44.
[45] F. Schopfer, T. Schuster, A.K. Louis, An iterative regularization method for the solution of the split feasibility
problem in Banach spaces, Inverse Problems, 24 (5) (2008), Art. I, 055008, 20 pp.
[46] Y. Shehu, O.S. Iyiola, C.D. Enyi, Iterative algorithm for split feasibility problems and fixed point problems in
Banach spaces, Numer. Algorithms, 72, (2016), 835–854.
[47] Y. Shehu, F.U. Ogbuisi and O.S. Iyiola, Convergence analysis of an iterative algorithm for fixed point problems
and split feasibility problems in certain Banach spaces, Optimization, 65 (2), (2016), 299–323.
[48] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control and Optimization, 14
(5), (1976), 877-–898.
[49] R.T. Rockafellar, On the maximal monotonicity of subdifferentials mappings, Pac. J. Math., 33, (1970), 209-216.[50] A. Taiwo, T.O. Alakoya, O.T. Mewomo, Halpern-type iterative process for solving split common fixed
point and monotone variational inclusion problem between Banach spaces, Numer. Algorithms, (2020), DOI:
10.1007/s11075-020-00937-2.
[51] A. Taiwo, T.O. Alakoya, O.T. Mewomo, Strong convergence theorem for fixed points of relatively nonexpansive multi-valued mappings and equilibrium problems in Banach spaces, Asian-Eur. J. Math., (2020),
https://doi.org/10.1142/S1793557121501370.
[52] A. Taiwo, L.O. Jolaoso and O.T. Mewomo, Inertial-type algorithm for solving split common fixed-point problem
in Banach spaces, J. Sci. Comput. (2020) DOI: 10.1007/s10915-020-01385-9.
[53] A. Taiwo, L.O. Jolaoso, O.T. Mewomo, Viscosity approximation method for solving the multiple-set split equality
common fixed-point problems for quasi-pseudocontractive mappings in Hilbert Spaces, J. Ind. Manag. Optim.,
(2020), DOI:10.3934/jimo.2020092.
[54] A. Taiwo, L.O. Jolaoso, O.T. Mewomo, A. Gibali, On generalized mixed equilibrium problem with α-β-µ bifunction
and µ-τ monotone mapping, J. Nonlinear Convex Anal., 21 (6), (2020), 1381-1401.
[55] A. Taiwo, A. O.-E. Owolabi, L.O. Jolaoso, O.T. Mewomo, A. Gibali, A new approximation scheme for solving
various split inverse problems, Afr. Mat., (2020), DOI:https://doi.org/10.1007/s13370-020-00832-y.
[56] S. Takahashi, W. Takahashi, M. Toyoda, Strong convergence theorem for maximal monotone operators with
nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., 147, (2010), 27–41.
[57] H.K. Xu, Inequality in Banach spaces with applications, Nonlinear Anal., 16, (1991), 1127-1138.
[58] J. Zhao, Solving split equality fixed point problem of quasi-nonexpanive mappings without prior knowledge of
operator norms, Optimization, 64, (12) 2015), 2619–2630.
[59] J. Zhao, Q. Yang, A simple feasibility problem for solving the multiple set split feasibility problem, Inverse Prob.
Sci. Eng., 21, (2013), 537–546.
Volume 12, Special Issue
December 2021
Pages 425-446
  • Receive Date: 12 December 2017
  • Revise Date: 20 November 2020
  • Accept Date: 19 February 2021