[1] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, A self adaptive inertial algorithm for solving split variational inclusion
and fixed point problems with applications, J. Ind. Manag. Optim., (2020), doi:10.3934/jimo.2020152.
[2] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, Two modifications of the inertial Tseng extragradient method with
self-adaptive step size for solving monotone variational inequality problems, Demonstr. Math., 53, (2020),208-
–224.
[3] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization, (2020),
DOI:10.1080/02331934.2020.1723586.
[4] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, Strong convergence theorems for finite families of pseudomonotone
equilibrium and fixed point problems in Banach spaces, Afr. Mat., (2021), DOI:10.1007/s13370-020-00869-z.
[5] T.O. Alakoya, A. Taiwo, O.T. Mewomo, Y.J. Cho, An iterative algorithm for solving variational inequality,
generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings,
Ann. Univ. Ferrara Sez. VII Sci. Mat. (2020) DOI: 10.1007/s11565-020-00354-2.
[6] T.O. Alakoya, A. Taiwo, O.T. Mewomo, On system of split generalised mixed equilibrium and fixed point problems
for multivalued mappings with no prior knowledge of operator norm, Fixed Point Theory, (2020), (accepted, to
appear).
[7] Y.I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications in Theory
and Applications of Nonlinear Operators of Accretive and Monotone type, Lecture Notes in Pure and Applied
Mathematics, Dekker, New York, NY,USA, Vol. 178,(1996), 15-50,
[8] K. O. Aremu, H. A. Abass, C. Izuchukwu and O. T. Mewomo, A viscosity-type algorithm for an infinitely countable
family of (f, g)-generalized k-strictly pseudononspreading mappings in CAT(0) spaces, Analysis, 40 (1), (2020),
19–37.
[9] K.O. Aremu, C. Izuchukwu, G.N. Ogwo, O.T. Mewomo, Multi-step Iterative algorithm for minimization and fixed
point problems in p-uniformly convex metric spaces, J. Ind. Manag. Optim., (2020), DOI:10.3934/jimo.2020063.
[10] V. Barbu, T. Precupanu, Convexity and Optimization in Banach spaces, Spinger Monographs in Mathematics,
(2012), DOI:10.1007/978-94-007-2247-7-2.
[11] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63,
(1994), 123–145.
[12] J.Y. Bello Cruz and Y. Shehu, An iterative method for split inclusion problems without prior knowledge of operator
norms, J. Fixed Point Theory Appl., 19 (3), (2017), 2017-–2036.
[13] C. Bryne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for the split common null
point problem, J. Nonlinear Convex Anal., 13 (2012), 759–775.
[14] Y. Censor, A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory Appl.,
34, (1981), 321–353.
[15] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8, (1994), 221–239.
[16] Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms,
59 (2), (2012), 301–323.
[17] H. Dehghan, C. Izuchukwu, O.T. Mewomo, D.A. Taba, G.C. Ugwunnadi, Iterative algorithm for a family of
monotone inclusion problems in CAT(0) spaces, Quaest. Math., 43 (7), (2020), 975-–998.
[18] A. Gibali, L.O. Jolaoso, O.T. Mewomo, A. Taiwo, Fast and simple Bregman projection methods for solving
variational inequalities and related problems in Banach spaces, Results Math., 75, (2020), Art. No. 179, 36 pp.
[19] E.C. Godwin, C. Izuchukwu, O.T. Mewomo, An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces, Boll. Unione Mat. Ital., (2020), DOI 10.1007/s40574-020-00.
[20] K. Goebel, S. Reich, Uniformly convexity, Hyperbolic Geometry and Nonexpansive mappings, Marcel Dekker,
New York, NY, USA, (1984).
[21] H. Guo, H. He and R. Chen, Convergence theorems for the split equality variational inclusion problem and fixed
point problem in Hilbert spaces, Fixed Point Theory and Appl., 2015 (2015), Art. ID 223.
[22] J.M. Hendrickx, A. Olshevsky, Matrix P-Norms are NP-Hard to approximate if p = 1, 2, ∞, SIAM J. Matrix
Anal. Appl., 31 (2012), 2802–2812.
[23] C. Izuchukwu, A.A. Mebawondu, O.T. Mewomo, A New Method for Solving Split Variational Inequality Problems
without Co-coerciveness, J. Fixed Point Theory Appl., (2020), 22 (4), (2020), Art. No. 98, 23 pp.
[24] C. Izuchukwu, G.N. Ogwo, O.T. Mewomo, An Inertial Method for solving Generalized Split Feasibility Problems over the solution set of Monotone Variational Inclusions, Optimization, (2020), DOI
10.1080/02331934.2020.1808648.[25] C. Izuchukwu, C. C. Okeke, O. T. Mewomo, Systems of Variational Inequalities and multiple-set split equality
fixed point problems for countable families of multivalued type-one demicontractive-type mappings, Ukra¨ın. Mat.
Zh., 71 (11), (2019), 1480–1501.
[26] L.O. Jolaoso, T.O. Alakoya, A. Taiwo and O.T. Mewomo, Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space, Optimization, (2020),
DOI:10.1080/02331934.2020.1716752.
[27] L.O. Jolaoso, K.O. Oyewole, K.O. Aremu, O.T. Mewomo, A new efficient algorithm for finding common fixed
points of multivalued demicontractive mappings and solutions of split generalized equilibrium problems in Hilbert
spaces, Int. J. Comput. Math., (2020), https://doi.org/10.1080/00207160.2020.1856823.
[28] L.O. Jolaoso, A. Taiwo, T.O. Alakoya, O.T. Mewomo, A unified algorithm for solving variational inequality and
fixed point problems with application to the split equality problem, Comput. Appl. Math., 39 (1), (2020), Art. No.
38, 28 pp.
[29] L.O. Jolaoso, A. Taiwo, T.O. Alakoya, O.T. Mewomo, Strong convergence theorem for solving pseudo-monotone
variational inequality problem using projection method in a reflexive Banach space, J. Optim. Theory Appl., 185
(3), (2020), 744–766.
[30] K.R. Kazmi, S.H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a
nonexpansive mapping, Optim. Lett., 8 (3) (2014), 1113-–1124.
[31] S.H. Khan, T.O. Alakoya, O.T. Mewomo, Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings
in Banach spaces, Math. Comput. Appl., 25, (2020), Art. 54.
[32] B. Martinet, Regularisation d’inequation variationelles par approximations successives, Rev. Francaise inf. Rech.
Oper., (1970), pp. 154-159.
[33] A. Moudafi, A relaxed alternating CQ algorithm for the split feasibility problems, Nonlinear Anal., 79, (2013),
117–121.
[34] A. Moudafi, Split Monotone variational inclusion problem, J. Optim. Theory Appl., 150, (2011), 275–283.
[35] A. Moudafi, E. Al-Shemas, Simultaneous iterative methods for split equality problems and applications, Trans.
Math. Prog. Appl., 1, (2013), 1–11.
[36] G. N. Ogwo, C. Izuchukwu, K.O. Aremu, O.T. Mewomo, A viscosity iterative algorithm for a family of monotone
inclusion problems in an Hadamard space, Bull. Belg. Math. Soc. Simon Stevin, 27, (2020), 127–152.
[37] G. N. Ogwo, C. Izuchukwu, K.O. Aremu, O.T. Mewomo, On θ-generalized demimetric mappings and monotone
operators in Hadamard spaces, Demonstr. Math., 53 (1), (2020), 95-–111.
[38] G. N. Ogwo, C. Izuchukwu, O.T. Mewomo, Inertial methods for finding minimum-norm solutions of the split
variational inequality problem beyond monotonicity, Numer. Algorithms, (2021), (accepted, to appear).
[39] A. O.-E. Owolabi, T.O. Alakoya, A. Taiwo, O.T. Mewomo, A new inertial-projection algorithm for approximating
common solution of variational inequality and fixed point problems of multivalued mappings, Numer. Algebra
Control Optim., (2021) DOI:10.3934/naco.2021004.
[40] O.K. Oyewole, H.A. Abass, O.T. Mewomo, A Strong convergence algorithm for a fixed point constrainted split
null point problem, Rend. Circ. Mat. Palermo II, (2020), DOI:10.1007/s12215-020-00505-6.
[41] K.O. Oyewole, C. Izuchukwu, C.C. Okeke, O.T. Mewomo, Inertial approximation method for split variational
inclusion problem in Banach spaces, Int. J. Nonlinear Anal. Appl., 11 (2), (2020), 285–304.
[42] K.O. Oyewole, O.T. Mewomo, L.O. Jolaoso and Safeer H. Khan, An extragradient algorithm for split generalized
equilibrium problem over the set of fixed points of quasi-phi-nonexpansive mappings in Banach spaces, Turkish J.
Math., 44 (4), (2020), 1146–1170.
[43] S. Reich and S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive
Banach spaces, Nonlinear Anal., 73 (1) (2010) 122–135.
[44] S. Reich, S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer.
Funct. Anal. Optim., 31 (1-3) (2010), 22–44.
[45] F. Schopfer, T. Schuster, A.K. Louis, An iterative regularization method for the solution of the split feasibility
problem in Banach spaces, Inverse Problems, 24 (5) (2008), Art. I, 055008, 20 pp.
[46] Y. Shehu, O.S. Iyiola, C.D. Enyi, Iterative algorithm for split feasibility problems and fixed point problems in
Banach spaces, Numer. Algorithms, 72, (2016), 835–854.
[47] Y. Shehu, F.U. Ogbuisi and O.S. Iyiola, Convergence analysis of an iterative algorithm for fixed point problems
and split feasibility problems in certain Banach spaces, Optimization, 65 (2), (2016), 299–323.
[48] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control and Optimization, 14
(5), (1976), 877-–898.
[49] R.T. Rockafellar, On the maximal monotonicity of subdifferentials mappings, Pac. J. Math., 33, (1970), 209-216.[50] A. Taiwo, T.O. Alakoya, O.T. Mewomo, Halpern-type iterative process for solving split common fixed
point and monotone variational inclusion problem between Banach spaces, Numer. Algorithms, (2020), DOI:
10.1007/s11075-020-00937-2.
[51] A. Taiwo, T.O. Alakoya, O.T. Mewomo, Strong convergence theorem for fixed points of relatively nonexpansive multi-valued mappings and equilibrium problems in Banach spaces, Asian-Eur. J. Math., (2020),
https://doi.org/10.1142/S1793557121501370.
[52] A. Taiwo, L.O. Jolaoso and O.T. Mewomo, Inertial-type algorithm for solving split common fixed-point problem
in Banach spaces, J. Sci. Comput. (2020) DOI: 10.1007/s10915-020-01385-9.
[53] A. Taiwo, L.O. Jolaoso, O.T. Mewomo, Viscosity approximation method for solving the multiple-set split equality
common fixed-point problems for quasi-pseudocontractive mappings in Hilbert Spaces, J. Ind. Manag. Optim.,
(2020), DOI:10.3934/jimo.2020092.
[54] A. Taiwo, L.O. Jolaoso, O.T. Mewomo, A. Gibali, On generalized mixed equilibrium problem with α-β-µ bifunction
and µ-τ monotone mapping, J. Nonlinear Convex Anal., 21 (6), (2020), 1381-1401.
[55] A. Taiwo, A. O.-E. Owolabi, L.O. Jolaoso, O.T. Mewomo, A. Gibali, A new approximation scheme for solving
various split inverse problems, Afr. Mat., (2020), DOI:https://doi.org/10.1007/s13370-020-00832-y.
[56] S. Takahashi, W. Takahashi, M. Toyoda, Strong convergence theorem for maximal monotone operators with
nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., 147, (2010), 27–41.
[57] H.K. Xu, Inequality in Banach spaces with applications, Nonlinear Anal., 16, (1991), 1127-1138.
[58] J. Zhao, Solving split equality fixed point problem of quasi-nonexpanive mappings without prior knowledge of
operator norms, Optimization, 64, (12) 2015), 2619–2630.
[59] J. Zhao, Q. Yang, A simple feasibility problem for solving the multiple set split feasibility problem, Inverse Prob.
Sci. Eng., 21, (2013), 537–546.