ces
[1] L. Abolnikov and A. Dukhovny, Markov chains with transition delta-matrix: ergodicity conditions, invariant
probability measures and applications, J. Appl. Math. Stoch. Anal. 4 (1991) 333–355.
[2] L. Abolnikov, J. H. Dshalalow and A. Treerattrakoon, On a dual hybrid queueing system, Nonlinear Anal. Hybrid
Syst. 2 (2008) 96–109.
[3] R. P. Agarwal and J. H. Dshalalow, New fluctuation analysis of D-policy bulk queues with multiple vacations,
Math. Comput. Model. 41 (2005) 253–269.
[4] J. R. Artalejo and A. Economou, Markovian controllable queueing systems with hysteretic policies: busy period
and waiting time analysis, Method. Comput. Appl. Prob. 7 (2005) 353–378.
[5] Y. Baba, On the MX/G/1 queue with vacation time, Oper. Res. Lett. 5 (1986) 93–98.
[6] J. B. Bacot and J. H. Dshalalow, A bulk input queueing system with batch gated service and multiple vacation
policy, Math. Comput. Model. 34 (2001) 873–886.
[7] R. Bekker, Queues with L´evy input and hysteretic control, Queueing Systems, 63 (2009) 281-299.
[8] K.C. Chae and H.W. Lee, MX/G/1 vacation models with N-policy: heuristic interpretation of the mean waiting
time, J. Oper. Res. Soc. 46 (1995) 258–264.
[9] S.R. Chakravarthy and A. Rumyantsev, Analysis of a queueing model with Batch Markovian arrival process and
general distribution for group clearance, Method. Comput. Appl. Prob. (2020) 1–29.
[10] C. W. Chan, M. Armony and N. Bambos, Maximum weight matching with hysteresis in overloaded queues with
setups, Que. Syst. 82 (2016) 315–351.
[11] G. Choudhury, A batch arrival queue with a vacation time under single vacation policy, Comput. Oper. Res. 29
(2002) 1941–1955.
[12] G. Choudhury, An MX/G/1 queueing system with a setup period and a vacation period, Que. Syst. 36 (2000)
23–38.
[13] G. Choudhury and H.K. Baruah, Analysis of a Poisson queue with a threshold policy and a grand vacation process:
an analytic approach, Sankhy¯a: Indian J. Stat. Series B (2000) 303–316.
[14] V. Deart, A. Maslennikov and Y. Gaidamaka, A hysteretic model of queuing system with fuzzy logic active queue
management, Proc. 15th Conf. Open Innov. Assoc. (2014) 32–38.
[15] J.H. Dshalalow, A note on D-policy bulk queueing systems, J. Appl. Prob. 38 (2001) 280[16] J.H. Dshalalow and E.E. Dikong, On generalized hysteretic control queues with modulated input and state dependent service, Stoch. Anal. Appl. 17 (1999) 937–961.
[17] J.H. Dshalalow, S. Kim and L. Tadj, Hybrid queueing systems with hysteretic bilevel control policies, Nonlinear
Anal. Theory Meth. Appl. 65 (2006) 2153–2168.
[18] J.H. Dshalalow and A. Merie, Fluctuation analysis in queues with several operational modes and priority customers, 26(2018) 309-333.
[19] J. H. Dshalalow, A. Merie and R.T. White, Fluctuation analysis in parallel queues with hysteretic control, Method.
Comput. Appl. Prob. 22 (2020) 295–327.
[20] J.H. Dshalalow, On applications of eXcess level processes to (N, D)-policy bulk queueing systems, J. Appl. Math.
Stoch. Anal. 9 (1996) 551–562.
[21] J. H. Dshalalow, Queues with hysteretic control by vacation and post-vacation periods, Que. Syst. 29 (1998)
231–268.
[22] J. Dshalalow, Queueing processes in bulk systems under the D-policy, J. Appl. Prob. 34 (1998) 976–989.
[23] J. H. Dshalalow and L. Tadj, A queueing system with a fiXed accumulation level, random server capacity and
capacity dependent service time, Int. J. Math. Math. Sci. 15 (1992) 189–194.
[24] J.H. Dshalalow and R.T. White, Current trends in random walks on random lattices, Math. 9 (2021) 11–48.
[25] J.H. Dshalalow and J. Yellen, Bulk input queues with quorum and multiple vacations, Math. Prob. Engin. 2 (1996)
95–106.
[26] R. F. Gebhard, A queuing process with bilevel hysteretic service-rate control, Naval Res. Log. Quart. 14 (1967)
55–67.
[27] U.C. Gupta, A.D. Banik and S.S. Pathak, Complete analysis of MAP/G/1/N queue with single (multiple) vacation
(s) under limited service discipline, J. Appl. Math. Stoch. Anal. 2005 (2005) 353–373.
[28] M. Kadi, A.A. Bouchentouf and L. Yahiaoui, On a multiserver queueing system with customers’ impatience until
the end of service under single and multiple vacation policies, Appl. Appl. Math. 15 (2020).
[29] S. Kalita, G. Choudhury, S. Kalita and G. Choudhury, Some aspects of a batch arrival Poisson queue with
N-policy, Stoch. Model. Appl. 5 (2002) 21–32
[30] J.C. Ke, An M/G/1 queue under hysteretic vacation policy with an early startup and un-reliable server, Math.
Meth. Oper. Res. 63 (2006) 357.
[31] M.Y. Kitaev and R.F. Serfozo, M/M/1 queues with switching costs and hysteretic optimal control, Oper. Res. 47
(1999) 310–312.
[32] H.W. Lee, S.S. Lee, J.O. Park and K.C. Chae, Analysis of the M X/G/1 queue by N-policy and multiple vacations,
J. Appl. Prob. 31 (1994) 476–496.
[33] S.S. Lee, H.W. Lee, S.H. Yoon and K.C. Chae, Batch arrival queue with N-policy and single vacation, Comput.
Oper. Res. 22 (1995) 173–189.
[34] H.W. Lee, S.L. Soon and C.C. Kyung, Operating characteristics of MX/G/1 queue with N-policy, Que. Syst. 15
(1994) 387–399.
[35] H.S. Lee and M.M. Srinivasan, Control policies for the MX/G/1 queueing system, Manag. Sci. 35 (1989) 708–721.
[36] F.V. Lu and R.F. Serfozo, M/M/1 queueing decision processes with monotone hysteretic optimal policies, Oper.
Res. 32 (1984) 1116–1132.
[37] K.C. Madan and W. Abu–Dayyeh, Restricted admissibility of batches into an M/G/1 type bulk queue with modified
Bernoulli schedule server vacations, ESAIM: Prob. Stat. 6 (2002) 113–125.
[38] J. Medhi, Single server queueing system with Poisson input: a review of some recent developments, Adv. Combin.
Meth. Appl. Prob. Stat. (1997) 317-338.
[39] A.V. Pechinkin, R.R. Razumchik and I.S. Zaryadov, First passage times in M2[X]| G|1|R queue with hysteretic
overload control policy, AIP Conf. Proc. 1738 (2016) 220007.
[40] E. Rosenberg and U. Yechiali, The MX/G/1 queue with single and multiple vacations under the LIFO service
regime, Oper. Res. Lett. 14 (1993) 171–179.
[41] C. Shekhar, A. Gupta, N. Kumar, A. Kumar and S. Varshney, Transient Solution of Multiple Vacation Queue
with Discouragement and Feedback, Scientia Iranica, 2020.
[42] L. Tadj, L. Benkherouf and L. Aggoun, A hysteretic queueing system with random server capacity, Comput.
Math. Appl. 38 (1999) 51–61.
[43] L. Tadj and J.C. Ke, A hysteretic bulk quorum queue with a choice of service and optional re-service, Qual. Tech.
Quant. Manag. 5 (2008) 161–178.
[44] L. Tadj and J.C. Ke, Control policy of a hysteretic queueing system, Math. Meth. Oper. Res. 57 (2003) 367–376.
[45] J. Teghem, Control of the service process in a queueing system, Euro. J. Oper. Res. 23 (1986) 141–158.
[46] J. Teghem, On a decomposition result for a class of vacation queueing systems, J. Appl. Prob. 27 (1990) 227–231.