[1] Swine influenza, The Merck veterinary manual 2008, ISBN 1-4421-6742-4, Retrieved April 30, ( 2009),
https://www.merckvetmanual.com.
[2] A. Ramirez, A.W. Capuano, D.A. Wellman, K.A. Lesher, S.F. Setterquist and G.C. Gray, Preventing zoonotic
influenza virus infection, Emerg Infect Dis. 12(6) (2006) 996—1000.
[3] Pandemic (H1N1) 2009, Emergencies preparedness, response, http://www.who.int/csr/disease/swineflu/faq/en/index.html[4] Antiviral drugs and Swine influenza. centers for disease control, Retrieved 2009-04-27,
https://www.cdc.gov/h1n1flu/antiviral.htm.
[5] FDA authorizes emergency use of influenza medicines, diagnostic test in response to Swine Flu outbreak in
humans, FDA News April 27, (2009).
[6] N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameter in the spread of malaria through
the sensitivity analysis of mathematical model, Depart. Public Health Epidem. 70 (2008) 1272–1296.
[7] O.P. Misra and D.K. Mishra, Spread and control of influenza in two groups: A model, Appl. Math. Comput. 219
(2013) 7982–7996.
[8] A.K. Srivastav and M. Ghosh, Modeling and analysis of the symptomatic and asymptomatic infections of swine
flu with optimal control, Model. Earth Syst. Environ, 2:177 (2016), DOI: 10.1007/s40808-016-0222-7.
[9] S. M. A. Rahman, N. K. Vaidya and X. Zou, Impact of early treatment programs on HIV epidemics: an immunitybased mathematical model, Math. Biosci. (2016), DOI: 10.1016/j.mbs.2016.07.009.[10] M. Kharis and R. Arifudin, Mathematical model of seasonal influenza with treatment in constant population, IOP
Conf. Series: J. Phys. Conf. Series 824 (2017) 012034, DOI:10.1088/1742-6596/824/1/012034.
[11] N.K. Goswami and B. Shanmukha, A Mathematical Model of Influenza: Stability and Treatment, Proc. Int. Conf.
Math. Model. Simul. (ICMMS 16), (2017).
[12] Marsudi, Marjono, A. Andari, Sensitivity analysis of effect of screening and HIV therapy on the dynamics of
spread of HIV, Appl. Math. Sci. 8(155) (2014) 7749–7763.
[13] S. Athithan, M. Ghosh and X. Li,Mathematical modeling and optimal control of corruption dynamics, AsianEuropean J. Math. 11(6) (2018) 1850090-12. DOI: 10.1142/S1793557118500900.
[14] N. K. Goswami, A.K. Srivastav, M. Ghosh and B. Shanmukha, Mathematical modeling of zika virus disease with
nonlinear incidence and optimal control, IOP Conf. Series: Journal of Physics: Conf. Series 1000 (2018) 012114
DOI:10.1088/1742-6596/1000/1/012114.
[15] O. S. Sisodiya, O.P. Misra and J. Dhar, Pathogen induced infection and its control by vaccination: A mathematical
model for Cholera disease, Int. J. Appl. Comput. Math. 4 (2018) 74 https://doi.org/10.1007/s40819-018-0506-x.
[16] A. K. Srivastav, N. K. Goswami, M.Ghosh and X. Z. Li, Modeling and optimal control analysis of Zika virus with
media impact, Int. J. Dyn. Cont. (2017), https://doi.org/10.1007/s40435-018-0416-0.
[17] J.M. Hefferman, R.J. Smith and L.M. Wahi, Perspective on the basic reproductive ratio, J. R. Soc. Interf. 2 (2005)
281–293.
[18] K. Park, Preventive and social Medicine., M/S BanarsiDas Bhanot publishers, Jabalpur, India, 2002.
[19] K. Park, Essentials of Community Health Nursing, M/S BanarsiDas Bhanot publishers, Jabalpur, India, 2004.
[20] P. Rani, D. Jain and V.P. Saxena, Stability analysis of HIV/AIDS transmission with treatment and role of female
sex workers, IJNSNS, DE GRUYTER, (2017), DOI 10.1515/ijnsns-2015-0147.
[21] H. Purushwani and P. Sinha Mathematical modeling on successive awareness policies for Swine Flu, IJSTR 8(8)
(2019) 310–320.
[22] C. Purushwani and P. Sinha Impact of treatment on droplet infection: Age structured mathematical model, IJSTR
8(7) (2019) 643–657.