[1] A.F. Aguiar, D.M.d.C. Neves and J.B.R. Silva, All-optical logic gates devices based on SPP coupling between
graphene sheets, J. Microwaves, Optoel. Elect. Appl. 17(2) (2018) 208–216.
[2] S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet and T.W. Ebbesen, Channel plasmon subwavelength
waveguide components including interferometers and ring resonators, Nature 440(7083) (2006) 508–511.
[3] D. Choi, C.K. Shin, D. Yoon, D.S. Chung, Y.W. Jin and L.P. Lee, Plasmonic optical interference, Nano Lett.
14(6) (2014) 3374–3381.
[4] A. Dolatabady and N. Granpayeh, All optical logic gates based on two dimensional plasmonic waveguides with
nanodisk resonators, J. Optic. Soc. Korea, 16(4) (2012) 432–442.
[5] A. Dolatabady, N. Granpayeh and M. Abedini, Frequency-tunable logic gates in graphene nano-waveguides, Photonic Network Commun. 39(3) (2020) 187–194.
[6] Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N.J. Halas and H. Xu, Branched silver nanowires as controllable plasmon routers, Nano Lett. 10(5) (2010) 1950–1954.
[7] U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves), JOSA 31(3) (1941) 213–222.
[8] Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo and X. Luo, Transmission characteristics of the aperture-coupled
rectangular resonators based on metal–insulator–metal waveguides, Optics Commun. 300 (2013) 277–281.
[9] C. Jianjun, L. Zhi, L. Ming, F. Xiuli, X. Jinghua and G. Qihuang, Plasmonic Y-splitters of high wavelength
resolution based on strongly coupled-resonator effects, Plasm. 7(3) (2012) 441–445.
[10] S. Kaur and R.-S. Kaler, Ultrahigh speed reconfigurable logic operations based on single semiconductor optical
amplifier, J. Optical Soci. Korea 16(1) (2012) 13–16.
[11] E. Kretschmann and H. Raether, Radiative decay of non-radiative surface plasmons excited by light, Z. Naturf.
A 23(12) (1968) 2135–2136.
[12] Z. Liu, L. Ding, J. Yi, Z. Wei and J. Guo, Design of a multi-bits input optical logic device with high intensity
contrast based on plasmonic waveguides structure, Optics Commun. 430 (2019) 112–118.
[13] Y. Liu, F. Qin, Z.-M. Meng, F. Zhou, Q.-H. Mao and Z.-Y. Li, All-optical logic gates based on two-dimensional
low-refractive-index nonlinear photonic crystal slabs, Optics Exp. 19(3) (2011) 1945–1953.
[14] Z. Lu and W. Zhao, Nanoscale electro-optic modulators based on graphene-slot waveguides, JOSA B, 29(6) (2012)
1490–1496.
[15] S.A. Maier, Plasmonics: Fundamentals and Applications, Springer Science & Business Media, 2007.
[16] Mainka, S. Sharma, R. Zafar, M.H. Mahdieh, G. Singh and M. Salim, High Contrast Ratio Based All-Optical
OR and NOR Plasmonic Logic Gate Operating at E Band, In: V. Janyani, G. Singh, M. Tiwari, A. d’Alessandro
(eds) Optical and Wireless Technologies, Lecture Notes in Electrical Engineering, 546 (2020) 325–332.
[17] I.S. Maksymov, Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities,
Physics Lett. A 375(5) (2011) 918–921.
[18] D. Maystre, Theory of Wood’s Anomalies, In: S. Enoch, and N. Bonod (eds) Plasmonics, Springer Series in
Optical Sci. 167 2012.
[19] M. Moradi, M. Danaie and A.A. Orouji, Design of all-optical XOR and XNOR logic gates based on Fano resonance
in plasmonic ring resonators, Optic. Quantum Elect. 51(5) (2019) 1–18.[20] N. Nozhat and N. Granpayeh, Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic
integrated circuits, Optics Commun. 284(13) (2011) 3449–3455.
[21] N. Nozhat and N. Granpayeh, Switching power reduction in the ultra-compact Kerr nonlinear plasmonic directional
coupler, Optics Commun. 285(6) (2012) 1555–1559.
[22] G.-Y. Oh, D.G. Kim and Y.-W. Choi, All-optical logic gate using waveguide-type SPR with Au/ZnO plasmon
stack, OECC 2010 Technical Digest, IEEE (2010) 374–375.
[23] A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z.
Phys. Hadrons Nuclei 216(4) (1968) 398–410.
[24] Y. Qi, P. Zhou, T. Zhang, X. Zhang, Y. Wang, C. Liu, Y. Bai and X. Wang, Theoretical study of a multichannel
Plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities, Results Phys. 14 (2019) 102506.
[25] L. Rayleigh, On the dynamical theory of gratings, Proc. Royal Society of London, Series A, Containing Papers
Math. Phys. Char. 79(532) (1907) 399–416.
[26] M.H. Rezaei, A. Zarifkar and M. Miri, Ultra-compact electro-optical graphene-based plasmonic multi-logic gate
with high extinction ratio, Optical Mate. 84 (2018) 572–578.
[27] J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White and M.L. Brongersma, Plasmonics for extreme light
concentration and manipulation, Nature Mate. 9(3) (2010) 193–204.
[28] A. Singh, A. Pal, Y. Singh and S. Sharma, Design of optimized all-optical NAND gate using metal-insulator-metal
waveguide, Optik 182 (2019) 524–528.
[29] J. Tao, Q.J. Wang, and X.G. Huang, All-optical plasmonic switches based on coupled nano-disk cavity structures
containing nonlinear material, Plasm. 6(4) (2011) 753–759.
[30] C.A. Thraskias, E.N. Lallas, N. Neumann, L. Schares, B.J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J.
Leuthold and I. Tomkos, Survey of photonic and plasmonic interconnect technologies for intra-datacenter and
high-performance computing communications, IEEE Commun. Surv. Tutor. 20(4) (2018) 2758–2783.
[31] B. Wang and G.P. Wang, Plasmon Bragg reflectors and nanocavities on flat metallic surfaces, Appl. Phys. Lett.
87(1) (2005) 013107.
[32] Y.-D. Wu, Y.-T. Hsueh and T.-T. Shih, Novel all-optical logic gates based on microring metal-insulator-metal
plasmonic waveguides, PIERS Proc. (2013) 169–172.
[33] Q. Xu and M. Lipson, All-optical logic based on silicon micro-ring resonators, Optics Exp. 15(3) (2007) 924–929.
[34] W. Yang, X. Shi, H. Xing and X. Chen, All-optical logic gates based on metallic waveguide arrays, Results Phys.
11 (2018) 837–841.