[1] C. Clavero, J. L. Gracia, G. I. Shishkin and L. P. Shishkina, Convergent ε-uniformly for parabolic singularly
perturbed problems with a degenerating convective term and a discontinuous source, Math. Model. Anal. 20(5)
(2015) 641–657.
[2] R. K. Dunne, E. O’Riordan and G. I Shishkin, A fitted mesh method for a class of singularly perturbed parabolic
problems with a boundary turning point, Comput. Meth. Appl. Math. 3(3) (2003) 361–372.
[3] V. Gupta, S.K. Sahoo and R.K. Dubey, Parameter-uniform fitted mesh higher order finite difference scheme for
singularly perturbed problem with an interior turning point, arXiv preprint arXiv:1909.07128.
[4] M.K. Kadalbajoo and K.C. Patidar, A survey of numerical techniques for solving singularly perturbed ordinary
differential equations, Appl. Math. Comput. 130(2) (2002) 457–510.
[5] M.K. Kadalbajoo and K.C. Patidar, Singularly perturbed problems in partial differential equations, Appl. Math.
Comput. 134(2) (2003) 371–429.[6] M.K. Kadalbajoo and V. Gupta, A brief survey on numerical methods for solving singularly perturbed problems,
Appl. Math. Comput. 217 (2010) 3641–3716.
[7] M.M. Khalsaraei, Nonstandard explicit third-order Runge-Kutta method with positivity property, Int. J. Nonlinear
Anal. Appl. 8(2) (2017) 37–46.
[8] J.P. Kauthen and V. Gupta, A survey of singularly perturbed Volterra equations, Appl. Numerical Math. 24(23)
(1997) 95–114.
[9] R.B. Kellog and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without
turning points, Math. Comput. 31(144) (1978) 1025–1039.
[10] A. Majumdar and S. Natesan, Second-order uniformly convergent Richardson extrapolation method for singularly
perturbed degenerate parabolic PDEs, Int. J. Appl. Comput. Math. 3(1) (2017) 31–53.
[11] A. Majumdar and S. Natesan, Alternating direction numerical scheme for singularly perturbed 2D degenerate
parabolic convection-diffusion problems, Appl. Math. Comput. 313 (2017) 453–473.
[12] A. Majumdar and S. Natesan, An ε-uniform hybrid numerical scheme for a singularly perturbed degenerate
parabolic convection-diffusion problem, Int. J. Comput. Math. 96(7) (2019) 1313–1334.
[13] N.A. Mbroh, S.C. Oukouomi Noutchie and R.Y. Mpika Massoukou, A uniformly convergent finite difference
scheme for Robin type singularly perturbed parabolic convection diffusion problem, Math. Comput. Simul. 174
(2020) 218–232.
[14] J.J.H. Miller, E. O’Riordan and G. I. Shishkin, Fitted Numerical Methods for Singularly Perturbed Problems:
Error Estimates in The Maximum Norm for Linear Problems in One and Two Dimension, World Scientific
Publications, Singapore, 2012.
[15] M.J. Ng-Stynes, E. O’Riordan and M. Stynes, Numerical methods for time-dependent convection-diffusion equations, J. Comput. Appl. Math. 21(3) (1988) 289–310.
[16] K. C. Patidar, High order fitted operator numerical method for self-adjoint singular perturbation problems, Appl.
Math. Comput., 171(1) (2005) 547–566.
[17] P. Rai and S. Yadav, Robust numerical schemes for singularly perturbed delay parabolic convection-diffusion
problems with degenerate coefficient, Int. J. Comput. Math. 98(1) (2020) 195–221.
[18] H. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations:
Convection-Diffusion-Reaction and Flow Problems, Springer Science & Business Media, 2008.
[19] M. Viscor and M. Stynes, A robust finite difference method for a singularly perturbed degenerate parabolic problem
Part I,Int. J. Numerical Anal. Model. 7(3) (2010).
[20] R. Vulanovi´c and P. A. Farrell, Continuous and numerical analysis of a multiple boundary turning point problem,
SIAM J. Numerical Anal. 30(5) (1993) 1400–1418.