[1] S. Bendaasa, N. Alaab, Periodic wave shock solutions of Burgers equations, A new approach, Int. J. Nonlinear
Anal. Appl. 10(1) (2019) 119–129.
[2] A. G. Bratsos, A fourth-order numerical scheme for solving the modified Burgers equation, Comput. Math. Appl.
60(5) (2010) 1393–1400.
[3] J.D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9(3) (1951)
225–236.
[4] F. Erdogan and M.G. Sakar, A quasilinearization technique for the solution of singularly perturbed delay differential equation, Math. Natural Sci. 2(1) (2018) 1–7.
[5] S.L. Harris, Sonic shocks governed by the modified Burgers’ equation, Euro. J. Appl. Math. 7(2) (1996) 201–222.
[6] M.K. Kadalbajoo and A. Awasthi, The partial differential equation ut + uux = uxx, Commun. Pure Appl. Math.
3(3) (1950) 201–230.
[7] M.K. Kadalbajoo and A. Awasthi, Uniformly convergent numerical method for solving modified Burgers’ equations
on a non-uniform mesh, J. Numerical Math. 16(3) (2008) 217–235.
[8] V. Gupta and M. Kadalbajoo, Numerical approximation of modified Burger’s equation via hybrid finite difference
scheme on layer-adaptive mesh, Neural Paral. Sci. Comput. 18 (2010) 167–194.
[9] J.J.H. Miller, E. O’Riordan and G.I. Shishkin, Fitted Numerical Methods for Singularly Perturbed Problems:
Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimension, World Scientific
Publications, Singapore, 2012.
[10] R.E. Mickens, Non-Standard Finite Difference Models of Differential Equations, World Scientific, Singapore,
1994.
[11] G.A. Nariboli and W.C. Lin, A new type of Burgers’ equation, Z. Angew. Math. Mech. 53(8) (1973) 505–510.
[12] L. Liu, G. Long and Z. Cen, A robust adaptive grid method for a nonlinear singularly perturbed differential
equation with integral boundary condition, Numerical Algor. 83(2) (2020) 719–739.
[13] K.C. Patidar, High order fitted operator numerical method for self-adjoint singular perturbation problems, Appl.
Math. Comput. 171(1) (2005) 547–566.
[14] A.S.V. Ravi Kanth and P.M.M. Kumar, Numerical technique for solving nonlinear singularly perturbed delay
differential equations, Math. Model. Anal. 23(1) (2018) 64–78.
[15] H. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations:
Convection-Diffusion-Reaction and Flow Problems, Springer Science & Business Media, 2008.
[16] Y. Ucar, N. M. Yagmurlu and O. Tasbozan, Numerical solutions of the modified Burgers’ equation by finite
difference methods, J. Appl. Math. Stat. Inf. 13(1) (2017) 19–30.
[17] H. Zeidabadi, R. Pourgholi and S. H. Tabasi, Solving a nonlinear inverse system of Burgers equations, Int. J.
Nonlinear Anal. Appl. 10(1) (2019) 35–54.