[1] A. Alsaedi, J. , Nieto and V. Venktesh, Fractional electrical circuits , Adv. Mech. Eng. 7(12) (2015) 1–7.
[2] I. Area, F. Batarfi, J. Losada, J. Nieto, W. Shammakh and A. Torres, On a fractional order Ebola epidemic
model, Adv. Diff. Equ, 2015 (2015) 278.
[3] A. Atangana, Fractal-fractional differentiation and integration:connecting fractal calculus and fractional calculus
to predict complex, system, Chaos Solitons Fract. 102 (2017) 396-–406.
[4] A. Atangana, Blind in a commutative world: simple illustrations with functions and chaotic attractors, Chaos
Solitons Fract. 114 (2018) 347—363.
[5] A. Atangana and J. Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity
to capture more natural phenomena, Eur. Phys. J. Plus. 133(4) (2018) 166, .
[6] A. Atangana, A. Akgul and K. Owolabi, Analysis of fractal fractional differential equations, Alexandria Engin.
J. 59(3) (2020) 1117–1134.
[7] A. Atangana and B. Alkahtani, Analysis of the Keller–Segel model with a fractional derivative without singular
kernel, SIAM J. Numerical Anal. 17(6) (2015) 4439—4453.
[8] A. Atangana and S. Jain,A new numerical approximation of the fractal ordinary differential, Euro. Phys. J. Plus.
133(37) (2018).
[9] I. Azhar, J. Mohd, M. Imad and M. Muhammad, Nonlinear waves propagation and stability analysis for planar
waves at far field using quintic B-spline collocation method, Alexandria Engin. J. 59(4) (2020) 2695–2703.
[10] A. Blu and M. Unser, The fractional spline wavelet transform: defnition and implementation, Proc. Twenty-Fifth
IEEE Int. Conf. Acoust. Speech Signal Proces. 2000, pp. 512–515.
[11] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Diff.
Appl. 1(2) (2015) 1-–13.
[12] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Berlin, 2010.
[13] P. Francesca, A fractional B-spline collection method for the numerical solution of fractional Predator-Prey models
Fract. Fract. 1(16), (2018).
[14] T. In´es, P. Emiliano and V. Duarte, Fractional derivatives for economic growth modelling of the group of twenty:
Application to prediction, Math. 8(1) (2020) 50.
[15] H. Jafari, C. Khalique, M. Ramezani and H. Tajadodi, Numerical solution of fractional differential equations by
using fractional B-spline, Open Phys. 11(10) (2013) 1372–1376.
[16] A. Kilbas, M. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, NorthHolland, Amsterdam, 2006.
[17] D. Kumar, J. Singh, M. Al Qurashi and D. Baleanu, Analysis of logistic equation pertaining to a new fractional
derivative with non-singular kernel, Adv. Mech. Eng. 9(2) (2017).
[18] D. Kumar, J. Singh and D. Baleanu, Numerical computation of a fractional model of differential-difference equation, J. Comput. Nonlinear Dyn. 11(6) (2014) 061004.
[19] D. Kumar, F. Tchier, F. Singh and D. Baleanu An efficient computational technique for fractal vehicular traffic
flow, Entropy 20(4) (2018).
[20] J. Losada and J.J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ.
Appl. 1(2) (2015) 87–92.
[21] M. Ma, D. Baleanu, Y. Gasimov and J. Yang, New results for multidimensional diffusion equations in fractal
dimensional space,Rom. J. Phys. 61 (2016) 784—794.
[22] F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, Springer, Wien,
1997.
[23] Z. Meng, M. Yi and J. Huang J, L. Song, Numerical solutions of nonlinear fractional differential equations by
alternative Legendre polynomials, Appl Math Comput. 336 (2018) 454–464.
[24] M. Owolabi and A. Atangana, Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative, Chaos Solitons Fract. 105 (2017) 111—119.
[25] I. Podlubny, Fractional Diferential Equations, Academic, San Diego, 1999.[26] M. Ramezani, Numerical analysis nonlinear multi-term time fractional differential equation with collection method
via fractional B-spline, Math. Meth. Appl. Sci.(42) (2015) 4640–4663.
[27] M. Ramezani, H. Jafari , S. Johnson and D. Baleanu, Complex B-spline collocation method for solvingweakly
singularVolterra integral equations of the second kind, Miskolc Math. Notes 16(2) (2015) 1091–1103.
[28] J. Singh, D. Kumar and D. Baleanu, New aspects of fractional Biswas–Milovic model with Mittag–Leffler law,
Math. Model. Nat. Phenom. 14(3) (2019) 303.
[29] A. Tateishi, H. , Ribeiro and E. Lenzi, The role of fractional time-derivative operators on anomalous diffusion,
Front. Phys. 5(52) (2017).
[30] M. Unser and T. Blu, Fractional splines and wavelets, SIAM Rev. 42(1) (2000) 43–67.