On the $(4\nu,3)$-arcs in $PG(2,q)$ and the related linear codes

Document Type : Research Paper

Authors

Department of Mathematics, College of Science, University of Basrah, Iraq

Abstract

In this paper, we use an irreducible plane-cubic curves in the projective plane $PG(2,q)$ to construct (k,3)-arcs of size $4\nu$ where $\lceil \frac{q+1-2\sqrt{q}}{4}\rceil\leq\nu\leq\lfloor \frac{q+1+2\sqrt{q}}{4} \rfloor$. Each of these arcs gives rise to an error-correcting code that corrects the maximum possible number of errors for its length. Furthermore, we discuss the completeness of each arc. The isotropy subgroup of each arc are determined. All Griesmer codes that correspond to plane-cubic curves are given for $7\leq q\leq 37,q$ is a prime.

Keywords

[1] S. Ball and A. Blokhuis, On the incompleteness of (k,n)-arcs in desarguesian planes of order q where n divides q, Geom. Dedicata 47(3) (1999) 325-332.
[2] D. Bartoli, S. Marcugini, and F. Pambianco, The non-existence of some NMDS codes and the extremal sizes of complete (n,3)-arcs in PG (2, 16), Designs Codes Cryptography 72(1) (2014) 129-134.
[3] D. Bartoli, S. Marcugini, and F. Pambianco, On the completeness of plane cubic curves over finite fields, Designs Codes Cryptography 83(2) (2017) 233-267.
[4] M.A. De Boer, Almost MDS codes, Designs Codes Cryptography 9(2) (1996) 143-155.
[5] J.H. Griesmer, A bound for error-correcting codes, IBM J. Res. Dev. 4(5) (1960) 532-542.
[6] R. Hill and D.E. Newton, Optimal ternary linear codes, Designs Codes Cryptography 2(2) (1992)137-157.
[7] J. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, 1998.
[8] J. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces, J. Statist. Plann. Inference 72(1-2) (1998) 355-380.
[9] J.W. Hirschfeld and J.F. Voloch, The characterization of elliptic curves over finite fields, J. Aust. Math. Soc. 45(2) (1988) 275-286.
[10] J.W. Hirschfeld, G. Korchmaros, F. Torres and F.E.T. Orihuela, Algebraic Curves Over a Finite Field, Princeton University Press, 2008.
[11] T. Maruta, Extension theorems for linear codes over finite fields, J. Geom. 101(1-2) (2011) 173-183.
[12] T. Maruta, Griesmer bound for linear codes over finite fields, Online table.
[13] B. Segre, Ovals in a finite projective plane, Canad. J. Math. 7 (1955) 414-416.
[14] G. Solomon and J.J. Stiffler, Algebraically punctured cyclic codes, Inf. Control 8(2) (1965) 170-179.
[15] H. Stichtennoth, Algebraic Function Fields and Codes, Springer Science, Business Media, 2009.
[16] T. Szonyi, On the embedding of (k, p)-arcs in maximal arcs, Designs, Codes Cryptography 18(1-3) (1999) 235-246.
Volume 12, Issue 2
November 2021
Pages 2589-2599
  • Receive Date: 30 March 2021
  • Revise Date: 12 May 2021
  • Accept Date: 27 June 2021