[1] E. Yusufoglu, A. Bekir, Solitons and periodic solutions of coupled nonlinear evolution equations by using the
sine-cosine method, Int J Comput Math, 83(12) (2006) 915–924.
[2] D.D. Ganji, A. Sadighi,Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction
diffusion equations, Int J Nonlinear Sci Numer Simul, 7 (4) (2006) 411–418.
[3] T. Ozis, A. Yildirim,Traveling wave solution of Korteweg-de Vries equation using He’s homotopy perturbation
method,Int J Nonlinear Sci Numer Simul, 8 (2) (2007) 239–242.
[4] AM Wazwaz,The tanh method for travelling wave solutions of nonlinear equations, Applied Mathematics and
Computation, 154 (3) (2004) 713–723.
[5] E. Fan, H. Zhang, A note on the homogeneous balance method, Phys Lett A, 246 (1998) 403–406.
[6] M.L. Wang, Exact solutions for a compound KdV-Burgers equation, Phys Lett A, 213 (1996) 279.
[7] M.A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations,
Chaos, Solitons & Fractals, 31 (2007) 95–104.
[8] J.L. Zhang, M.L. Wang, Y.M. Wang, Z.D. Fang, The improved F-expansion method and its applications, Phys
Lett A, 350 (2006) 103–109.[9] SA El -wakil, M.A. Madkour, M.A. Abdou, Application of the Exp-function method for nonlinear evolution
equations vith variable coefficients, Phys. Letters A 369 (2007), 62 – 69.
[10] M.A. Abdou , A.A. Soliman and S.T. El-Basyony , New Application of the Exp-function for improved Boussinesq
equation, Phys. Lett. A 369,(2007), 469– 475.
[11] T. Ozis, C. Koroglu, A novel approch for solving the Fisher using Exp- function method, Physics Letters A 372
(2008) 3836– 3840.
[12] M. Wang, X. Li, J. Zhang, The (G’/G)-expansion method and traveling wave solutions of nonlinear evolution
equations in mathematical physics, Phys Lett A. 372 (2008) 417–23.
[13] E.M.E. Zayed , K.A. Gepreel, The (G’/G)-expansion method for finding traveling wave solutions of nonlinear
partial differential equations in mathematical physics, J Math Phys. 50 (2009) 013502-13.
[14] E.M.E. Zayed, New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized (G’/G)-expansion method, J Phys A Math Theor. 42 (2009) 195202-14.
[15] H. Bulut, Y. Pandir, H.M. and Baskonus , Symmetrical hyperbolic Fibonacci function solutions of generalized
Fisher equation with fractional order, AIP Conference Proceedings, 1558 (2013) 1914–1918.
[16] Y.A. Tandogan, Y. Pandir, and Y. Gurefe, Solutions of the nonlinear differential equations by use of modified
Kudryashov method, Turkish Journal of Mathematics and Computer Science, 1 (2013) 54–60.
[17] Y. Pandir, Symmetric fibonacci function solutions of some nonlinear partial differential equations, Applied Mathematics Information Sciences, 8(5) (2014) 2237–2241.
[18] E.M.E. Zayed, G.M. Moatimid, A.G. Al-Nowehy, The generalized Kudryashov method and its applications for
solving nonlinear PDEs in mathematical physics, Scientific J Math Res. 5 (2015) 19–39.
[19] E.M.E. Zayed, A.G. Al-Nowehy, Exact solutions of the Biswas-Milovic equation, the ZK (m,n,k) equation and the
K (m,n) equation using the generalized Kudryashov method, Open phys. 14 (2016) 129–139.
[20] E.M.E. Zayed, A.G. Al-Nowehy, Exact traveling wave solutions for nonlinear PDEs in mathematical physics using
the generalized Kudryashov method, Serbian J Elec Eng. 13(2) (2016) 203–227.
[21] L.A. Alhakim, A.A. Moussa, The double auxiliary equations method and its application to space-time fractional
nonlinear equations, Journal of Ocean Engineering and Science, 4 (2019) 7–13.
[22] A.M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Mathematical and Computer Modelling, 40 (2004) 499–508.
[23] M.M. Ghalib, A.A. Zafar,Z. Hammouch, M.B. Riaz, K. Shabbir, Analytical results on the unsteady rotational flow
of fractional-order non-Newtonian fluids with shear stress on the boundary, Discrete and Continuous Dynamical
Systems-S, 13(3) (2020) 683–693.
[24] M. M. Ghalib, A.A. Zafar, M.B. Riaz, Z. Hammouch, and K. Shabbir, Analytical approach for the steady MHD
conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative Physica A: Statistical
Mechanics and its Applications, 555 (2020) 123941.
[25] D. Bienvenue, B. Gambo, J. Mibaille, Z. Hammouch and A. Houwe, Chirped Solitons with Fractional Temporal
Evolution in Optical Metamaterials, Methods of Mathematical Modelling: Fractional Differential Equations, 205
(2019).
[26] A.A. Zafar, M.B. Riaz and Z. Hammouch, A Class of Exact Solutions for Unsteady MHD Natural Convection
Flow of a Viscous Fluid over a Moving Inclined Plate with Exponential Heating, Constant Concentration and
Chemical Reaction, In International Conference on Computational Mathematics and Engineering Sciences (pp.
218-232). Springer, Cham (2019).
[27] A. Houwe, J. Sabi’u, Z. Hammouch, and S.Y. Doka, Solitary pulses of the conformable derivative nonlinear
differential equation governing wave propagation in low-pass electrical transmission line, Physica Scripta, 95 (4)
(2019) 045203.
[28] M. Savescu, K.R. Khan, P. Naruka, H. Jafari, L. Moraru, and A. Biswas, Optical solitons in photonic nano waveguides with an improved nonlinear Schrödinger’s equation, Journal of Computational and Theoretical Nanoscience,
10(5) (2013) 1182–1191.
[29] A. Borhanifar, H. Jafari, and S.A. Karim, New solitons and periodic solutions for Thekadomtsev-Petviashvili
equation, The Journal of Nonlinear Sciences and its Applications, 1(4) (2008) 224–229.
[30] H. Jafari, A. Sooraki, and C.M. Khalique, Dark solitons of the Biswas–Milovic equation by the first integral
method Optik, 124(19) (2013) 3929–3932.
[31] R. Khalil,M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl.
Math. 264 (2014) 65–70.
[32] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015) 57–66.
[33] T. Abdeljawad, Q.M. Al-Mdallal, F. Jarad, Fractional logistic models in the frame of fractional operators generated
by conformable derivatives, Chaos, Solitons & Fractals, 119 (2019) 94–101.[34] M. Al-Refai, T. Abdeljawad, Fundamental results of conformable Sturm-Liouville eigenvalue problems, Complexity, 2017 (2017) 1–7.
[35] D. Baleanu, F. Jarad, E. Uğurlu, Singular conformable sequential differential equations with distributional potentials, Quaestiones Mathematicae, 42(3) (2019) 277–287.
[36] E. Set, A.O. Akdemir, A. Gözpinar, F. Jarad, (2019, October). Ostrowski type inequalities via new fractional
conformable integrals, AIMS Mathematics, 4(6) (2019) 1684–1697.