s
[1] A. Abassi, A. El Hachimi and A. Jamea, Entropy solutions to nonlinear Neumann problems with L
1
-data, Int. J.
Math. Stat. 2 (2008) 4–17.
[2] E. Azroul and F. Balaadich, Weak solutions for generalized p-Laplacian systems via Young measures, Moroccan
J. of Pure Appl. Anal. 4(2) (2018) 77–84.
[3] E. Azroul, F. Balaadich, Quasilinear elliptic systems in perturbed form, Int. J. Nonlinear Anal. Appl. 10(2) (2019)
255–266.
[4] E. Azroul and F. Balaadich, A weak solution to quasilinear elliptic problems with perturbed gradient, Rend. Circ.
Mat. Palermo Series 2 70 (2020) 151-166.
[5] E. Azroul and F. Balaadich, On strongly quasilinear elliptic systems with weak monotonicity, J. Appl. Anal. 27(1)
(2021) 153–162.
[6] F. Balaadich and E. Azroul, On a class of quasilinear elliptic systems, Acta Sci. Math. (Szeged) 87 (2021) 141-152
[7] F. Balaadich and E. Azroul, Elliptic systems of p-Laplacian type, Tamkang J. Math. 53 (2022).
https://doi.org/10.5556/j.tkjm.53.2022.3296
[8] J.M. Ball, A version of the fundamental theorem for Young measures, In: Rascle M., Serre D., Slemrod M.
(eds) PDEs and Continuum Models of Phase Transitions. Lecture Notes in Physics, vol 344. Springer, Berlin,
Heidelberg. 344(1989) 207–215.
[9] N. Bourbaki, Integration I (S. Berberian, Trans.), Springer-Verlag, Berlin, Heidelberg, 2004.
[10] D. Breit, A. Cianchi, L. Diening, T. Kuusi and S. Schwarzaker, The p-Laplace system with right-hand side in
divergence form: inner and up to the boundary pointwise estimates, Nonlinear Anal. Theory, Meth. Appl. 115
(2017) 200–212.
[11] J. Chabrowski, Degenerate elliptic equation involving a subcritical Sobolev exponent, Portugal. Math. 53 (1996)
167–177.
[12] F. Crispo, C-R. Grisanti and P. Maremont, On the high regularity of solutions to the p-Laplacian boundary value
problem in exterior domains, Ann. Math. Pure Appl. 195 (2016) 821–834.
[13] J.I. Diaz and F. de Thelin, On a nonlinear parabolic problem arising in some models related to turbulent flows,
SIAM J. Math. Anal. 25(4) (1994) 1085–1111.
[14] G. Dolzmann, N. Hungerb¨uhler, S. M¨uller, The p-harmonic system with measure-valued right hand side, Ann.
Inst. Henri Poincar´e, 14(3) (1997) 353–364.
[15] L.C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS, 1990.
[16] N. Hungerb¨uhler, Quasilinear elliptic systems in divergence form with weak monotonicity, New York J. Math. 5
(1999) 83–[17] T. Iwaniec, Projections onto gradients fields and L
p
-estimates for degenerated elliptic operators, Studia Math. 75
(3) (1983) 293–312.
[18] O. Kavian, Introduction `a la Th´eorie des Points Critiques: et Applications aux Probl`emes Elliptiques, SpringerVerlag, 1993.
[19] P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth, J. Diff. Equ. 221 (2006) 412–443.
[20] S. EH. Miri, Existence of solutions to quasilinear elliptic problems with nonlinearity and absorption-reaction
gradient term, Elect. J. Diff. Equ. 32 (2014) 1–12
[21] P. Pucci and R. Servadei, On weak solutions for p-Laplacian equations with weights, Discrete Cont. Dyn. Syst.
2007 (2007) 1–10.
[22] M. Struwe, Variational Methods, Second Edition, Springer Verlag Berlin, Heidelberg, New York, 1996.
[23] H. Beir˜ao da Veiga and F. Crispo, On the global W2,q regularity for nonlinear N-systems of the p-Laplacian type
in n space variables, Nonlinear Anal. 75 (2012) 4346–4354.
[24] L. Wei, H. Zhou, Research on the existence of solution of equation involving p-Laplacian operator, Appl. Math.
Chinese Univ. Ser. B 21 (2) (2006) 191–202.
[25] L. Wei and R.P. Agarwal, Existence of solutions to nonlinear Neumann boundary value problems with generalized
p-Laplacian operator, Comput. Math. Appl. 56 (2008) 530–541.
[26] E. Zeidler, Nonlinear functional analysis and its application I, Springer, 1986.