[1] C. Allouch, D. Sbibih and M. Tahrichi, Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations, J. Comp. Appl. Math, 353 (2019) 253–264.
[2] C. Allouch, D. Sbibih and M. Tahrichi, Superconvergent Nystr¨om method for Urysohn integral equations, BIT Numerical Math. 57 (2017) 3–20.
[3] K. E. Atkinson and J. Flores, The discrete collocation method for nonlinear integral equations, IMA J. Numerical Anal. 13 (1993) 195–213.
[4] K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, 1997.
[5] M. Golberg and C. Chen, Discrete Projection Methods for Integral Equations, Computational Mechanics Publications, 1997.
[6] K. Atkinson, F. Potra, Projection and iterated projection methods for nonlinear integral equations, SIAM J. Numer. Anal. 24 (1987) 1352–1373.
[7] P. Das, M. Sahani, G. Nelakanti and G. Long, Legendre spectral projection methods for Fredholm-Hammerstein integral equations, J. Sci. Comput. 68 (2016) 213–230.
[8] P. Das, G. Nelakanti and G. Long, Discrete Legendre spectral Galerkin method for Urysohn integral equations, Int. J. Comput. Math. 95 (2018) 465–489.
[9] P. Das, G. Nelakanti and G. Long, Discrete Legendre spectral projection methods for Fredholm-Hammerstein integral equations, J. Comput. Appl. Math. 278 (2015) 293–305.
[10] S. Kumar, The numerical solution of Hammerstein equations by a method based on polynomial collocation, Aust. Math. Soc. J. Ser. B Appl. Math. 31 (1990) 319–329.
[11] M. Golberg, Improved convergence rates for some discrete Galerkin methods, Meth. J. Int. Eqns. Appl. 8 (1996) 307- 335.
[12] I.H. Sloan, Polynomial interpolation and hyper interpolation over general regions, J. App. Theory 83 (1995) 238–254.
[13] L. Grammont, R.P. Kulkarni and P.B. Vasconcelos, the iterated modified projection methods for nonlinear integral equations, J. Int. Eq. Appl. 25 (2013) 481–516.
[14] Q. Lin, I.H. Sloan and R. Xie, Extrapolation of the iterated-collocation method for integral equations of the second kind, SIAM J. Numer. Anal. 6 (1990) 1535–1541.
[15] E. Schock, Galerkin-like methods for equations of the second kind, J. Int. Eqns. Appl. 4 (1982) 361-364.
[16] I.H. Sloan, Error analysis for a class of degenerate kernel methods, Numer. Math. 25 (1976) 231–238.
[17] F. Riesz and B.S. Nagy, Functional Analysis, Frederick Ungar Pub, New York, 1955.
[18] G.M. Vainikko, Galerkin’s perturbation method and the general theory of approximate methods for non-linear equations, USSR Comput. Math. Math. Phys. 7 (1967) 1–41.