[1] S.S. Amelian, S.M. Sajadi, M. Navabakhsh and M. Esmaelian, Multi-objective optimization for stochastic failure-prone job shop scheduling problem via a hybrid of NSGA-II and simulation method, Expert Syst. (2019) e12455.
[2] H. Amin-Tahmasbi and R. Tavakkoli-Moghaddam, Solving a bi-objective flow shop scheduling problem by a Multiobjective Immune System and comparing with SP EA2+ and SPGA, Adv. Engin. Software 42(10) (2011) 772–779.
[3] S.F. Attar, M. Mohammadi, R. Tavakkoli-Moghaddam and S. Yaghoubi, Solving a new multi-objective hybrid flexible flow shop problem with limited waiting times and machine-sequence-dependent set-up time constraints, Int. J. Comput. Integ. Manufact. 27(5) (2014) 450–469.
[4] A. Berrichi, L. Amodeo, F. Yalaoui, E. Chatelet and M. Mezghiche, Bi-objective optimization algorithms for joint production and maintenance scheduling: application to the parallel machine problem, J. Intell. Manufact. 20(4) (2009) 389.
[5] A. Berrichi, F. Yalaoui, L. Amodeo and M. Mezghiche, Bi-objective ant colony optimization approach to optimize production and maintenance schedules, Comput. Oper. Res. 37(9) (2010) 1584–1596.
[6] S.H. Choi and K. Wang, Flexible flow shop scheduling with stochastic processing times: A decomposition-based approach, Comput. Indust. Engin. 63(2) (2012) 362–373.
[7] C.C. Coello and M.S. Lechuga, MOPSO: A proposal for multiple objective particle swarm optimization, Proc. 2002 Cong. Evolut. Comput. CEC′02 (Cat. No. 02TH8600) 2 (2002) 1051–1056.
[8] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA−Q, IEEE Trans. Evolut. Comput. 6(2) (2002).
[9] R. Eberhart and J. Kennedy, Particle swarm optimization, Proc. IEEE Int. Conf. Neural Networks 4 (1995) 1942–1948.
[10] E. Gheisariha, M. Tavana, F. Jolai and M. Rabiee, A simulation-optimization model for solving flexible flow shop scheduling problems with rework and transportation, Math. Comput. Simul. 180 (2021) 152–177.
[11] A. Ghodratnama, F. Jolai and R. Tavakkoli-Moghaddam, Solving a new multi-objective multi-route flexible flow line problem by multi-objective particle swarm optimization and NSGA-II, J. Manufact. Syst. 36 (2015) 189–202.
[12] A. Hasani, S.M.H. Hosseini, A bi-objective flexible flow shop scheduling problem with machine-dependent processing stages: Trade-off between production costs and energy consumption, Appl. Math. Comput.386 (2020) 125533.
[13] M. Hekmatfar, S.F. Ghomi and B. Karimi, Two-stage reentrant hybrid flow shop with setup times and the criterion of minimizing the makespan, Appl. Soft Comput. 11(8) (2011) 4530–4539.
[14] F. Jolai, H. Asefi, M. Rabiee and P. Ramezani, Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem, Scientia Iranica 20(3) (2013) 861–872.
[15] M. Khalili, R. Tavakkoli-Moghaddam, A multi-objective electromagnetism algorithm for a bi-objective flow shop scheduling problem, J. Manufact. Syst. 31(2) (2012) 232–239.
[16] M.E. Kurz and R.G. Askin, Scheduling flexible flow lines with sequence-dependent setup times, European J. Oper. Res. 159(1) (2004) 66–82.
[17] K.S. Moghaddam, Multi-objective preventive maintenance and replacement scheduling in a manufacturing system using goal programming, Int. J. Prod. Econ. 146(2) (2013) 704–716.
[18] M. Mohammadi, J.Y. Dantan, A. Siadat and R. Tavakkoli-Moghaddam, A bi-objective robust inspection planning model in a multi-stage serial production system, Int. J. Prod. Econ. 56(4) (2018) 1432–1457.
[19] B. Naderi, R. Tavakkoli-Moghaddam and M. Khalili, Electromagnetism-like mechanism and simulated annealing algorithms for flow shop scheduling problems minimizing the total weighted tardiness and makespan, KnowledgeBased Syst. 23(2) (2010) 77–85.
[20] B. Naderi, M. Zandieh and V. Roshanaei, Scheduling hybrid flow shops with sequence-dependent setup times to minimize makespan and maximum tardiness, Int. J. Adv. Manufact. Tech. 41(11–12) (2009) 1186–1198.
[21] M. Naderi-Beni, E. Ghobadian, S. Ebrahimnejad and R. Tavakkoli-Moghaddam, The fuzzy bi-objective formulation for a parallel machine scheduling problem with machine eligibility restrictions and sequence-dependent setup times, Int. J. Prod. Res. 52(19) (2014) 5799–5822.
[22] S. Noori-Darvish and R. Tavakkoli-Moghaddam, Minimizing the total tardiness and makespan in an open shop scheduling problem with sequence-dependent setup times, J. Indust. Engin. Int. 8(1) (2012) 25.
[23] K.E. Parsopoulos and M.N. Vrahatis, Particle swarm optimization method in multiobjective problems, Proc. 2002 ACM Symp. Appl. Comput. (2002) 603–607.
[24] S. Raissi, R. Rooeinfar and V.R. Ghezavati, Three hybrid metaheuristic algorithms for stochastic flexible flow shop scheduling problem with preventive maintenance and budget constraint, J. Opt. Indust. Engin. (2019) 131–147.
[25] M. Reyes-Sierra and A. Carlos, Multi-objective particle swarm optimizers: A survey of the state of the art, Int. J. Comput. Intel. Res. 2(3) (2006) 287–308.
[26] R. Rooeinfar, R. Raissi and V.R. Ghezavati, Stochastic flexible flow shop scheduling problem with limited buffers and fixed interval preventive maintenance: a hybrid approach of simulation and metaheuristic algorithms, Simulation (2019) 509–528.
[27] B. Shahidi-Zadeh, R. Tavakkoli-Moghaddam, A. Taheri-Moghadam and I. Rastgar, Solving a bi-objective unrelated parallel batch processing machines scheduling problem: A comparison study, Comput. Oper. Res. 88 (2017) 71-90.
[28] N. Sriniva and K. Deb, Multi-objective optimization using non-dominated sorting in genetic algorithms, J. Evolut. Comput. 2(3) (1994) 221–248.
[29] J.U. Sun, A Taguchi approach to parameter setting in a genetic algorithm for a general job shop scheduling problem, IEMS 6(2) (2007) 119–124.
[30] G. Taguchi, Introduction to Quality Engineering: Designing Quality Into Products and Processes, The Organization, the University of Michigan, 1986.
[31] R. Tavakkoli-Moghaddam, M. Azarkish and A. Sadeghnejad-Barkousaraie, A new hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling problem, Expert Syst. Appl. 38(9) (2011) 10812–10821.
[32] R. Tavakkoli-Moghaddam, M. Azarkish and A. Sadeghnejad-Barkousaraie, Solving a multi-objective job shop scheduling problem with sequence-dependent setup times by a Pareto archive PSO combined with genetic operators and VNS, Int. J. Adv. Manufact. Tech. 53(5–8) (2011) 733–750.
[33] A. Villemeur, Assessment, Hardware, Software and Human Factors, Volume 2 of Reliability, availability, Maintainability and Safety Assessment, Wiley, 1992.
[34] S. Wang, Bi-objective optimization for integrated scheduling of single machines with setup times and preventive maintenance planning, Int. J. Prod. Res. 51(12) (2013) 3719–3733.
[35] S. Wang and M. Liu, Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive maintenance planning, J. Manufact. Syst. 37 (2015) 182–192.
[36] Y. Yusoff, M.S. Ngadiman and A.M. Zain, Overview of NSGA-II for optimizing machining process parameters, Procedia Engin. 15 (2011) 3978–3983.
[37] S.S. Zabihzadeh and J. Rezaeian, Two meta-heuristic algorithms for flexible flow shop scheduling problem with robotic transportation and release time, Appl. Soft Comput. 40 (2016) 319–330.
[38] M. Zandieh, S.F. Ghomi and S.M. Husseini, An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times, Appl. Math. Comput. 180(1) (2006) 111–127.
[39] M. Zandieh, S.M. Sajadi and R. Behnoud, Integrated production scheduling and maintenance planning in a hybrid flow shop system: a multi-objective approach, Int. J. Syst. Assur. Engin. Manag.8(2) (2017) 1630–1642.
[40] E. Zitzler and L. Thiele, Multi-objective Evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evolut. Comput. 3(4) (1999).