Homoclinic Orbits and Localized Solutions in Discrete Nonlinear Schrodinger Equation with Long-Range Interaction

Document Type : Research Paper


1 Department of Mathematics and Informatics, Faculty of Exact Sciences, Natural and Life Sciences, El Arbi Tebessi University, Tebessa, Algeria.

2 Department of Mathematics and Informatic, Abdelhafidh Boussouf University Center of Mila, Mila, Algeria


In this paper, we use the homoclinic orbit approach without using small perturbations to prove the existence of soliton solutions of the discrete nonlinear Schrödinger equations with long-range interaction by employing the properties of the symmetries of reversible planar maps. Moreover, the long-range interaction by a potential proportional to $1/l^{1+\alpha} $ with fractional $\alpha < 1 $ and $l $ as natural number.


[1] S. Aubry, Anti-integrability in dynamical and variational problems, Physica D: Nonlinear Phenom. 86.(1-2) (1995) 284–296.
[2] D. Cai, A.R. Bishop and N. Grønbech-Jensen, Localized states in discrete nonlinear Schr¨odinger equations, Phys. Rev. Lett. 72(5) (1994) 591.
[3] D. Cai, A. R Bishop, N. Grønbech-Jensen and M. Salerno, Electric-field-induced nonlinear Bloch oscillations and dynamical localization, Phys. Rev. Lett. 74(7) (1995) 1186.
[4] O. Ciaurri, C. Lizama, L. Roncal and J.L. Varona, ´ On a connection between the discrete fractional Laplacian and superdiffusion, Appl. Math. Lett. 49 (2015) 119–125.
[5] O. Ciaurri, L. Roncal, P.R. Stinga, J.L. Torrea and J. L. Varonaa, Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications, Adv. Math. 330 (2018) 688–738.
[6] R.L. Devaney, Homoclinic bifurcations and the area-conserving H´enon mapping, J. Diff. Equ. 51(2) (1984) 254–266.
[7] H.R. Dullin and J.D. Meiss, Generalized H´enon maps: the cubic diffeomorphisms of the plane, Physica D: Nonlinear Phenom. 143(1-4) (2000) 262–289.
[8] C.S. Goodrich, On positive solutions to nonlocal fractional and integer-order difference equations, Appl. Anal. Discrete Math. 5(1) (2011) 122–132.
[9] D. Hennig, K.Ø. Rasmussen, H. Gabriel and A. B¨ulow, Solitonlike solutions of the generalized discrete nonlinear Schr¨odinger equation, Physical Review E 54.5 (1996), 5788.
[10] M. Jenkinson and M.I. Weinstein, Discrete solitary waves in systems with nonlocal interactions and the Peierls–Nabarro barrier, Commun. Math. Phys. 351(1) (2017) 45–94.
[11] J.S. W. Lamb and J.A.G. Roberts, Time-reversal symmetry in dynamical systems: a survey, Physica-Sec. D 112(1) (1998) 1–39.
[12] R.S. MacKay, Discrete breathers: classical and quantum, Physica A: Stat. Mech. Appl. 288(1-4) (2000) 174–198.
[13] M.I. Molina, The fractional discrete nonlinear Schr¨odinger equation, Phys. Lett. A 384(8) (2020) 126180.
[14] A. Pankov and N. Zakharchenko, On some discrete variational problems, Acta Appl. Math. 65(1) (2001) 295–303.
[15] W.X. Qin and X. Xiao, Homoclinic orbits and localized solutions in nonlinear Schr¨odingerr lattices, Nonlinear. 20(10) (2007) 2305.[16] V.E. Tarasov and G.M. Zaslavsky, Fractional dynamics of systems with long-range interaction, Commun. Nonlinear Sci. Numer. Simul. 11(8) (2006) 885–898.
[17] M.I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices, Nonlinear. 12(3) (1999) 673.
[18] M. Xiang and B. Zhang, Homoclinic solutions for fractional discrete Laplacian equations, Nonlinear Anal. 198 (2020), 111886.
Volume 13, Issue 1
March 2022
Pages 353-363
  • Receive Date: 20 June 2021
  • Accept Date: 12 September 2021