[1] J. Bals, G. Hofer, A. Pfeiffer, and C. Schallert, Virtual Iron Bird: A Multidisciplinary Modelling and Simulation Platform for new Aircraft System Architectures, In Deutscher Luftund Raumfahrtkongress, Friedrichshafen, Germany, 2005.
[2] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, Springer-Verlag New York Inc., 2003.
[3] S.L. Campbell, P. Kunkel and V. Mehrmann, Regularization of Linear and Nonlinear Descriptor Systems, In L. T. Biegler, S. L. Campbell, and V. Mehrmann, editors, Control and Optimization with Differential-Algebraic Constraints, Advances in Control and Design, SIAM Publications, 2012.
[4] S.L. Campbell, Linearization of DAEs along trajectories, Z. Angew. Math. Phys. 46 (1995) 70–84.
[5] S.L. Campbell, C.D. Meyer and N.J. Rose, Application of the drazin inverse to linear systems of differential equations with singular constant coefficients, SIMA J. Appl. Math. 31 (1976) 411–425.
[6] V.F. Chistyakov, Selected chapters of the theory of algebraic–differential systems, in Russian, Nauka, Moscow, 2003.
[7] L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences, Springer Berlin., 1989.
[8] G. Denk, R. Winkler, Modelling and simulation of transient noise in circuit simulation, Int. J. Math. Comput. Model. Dyn. Syst. 13 (2007) 383–394.
[9] E. Hairer and G. Wanner,Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems, Springer Series in Computational Mathematics, 2004.
[10] M. Hiller and K. Hirsch, Multibody system dynamics and mechatronics, Z. Angew. Math. Mech. 86 (2006) 87–109.
[11] A. Ilchmann and T. Reis, Surveys in differential-algebraic equations III, Springer-Verlag New York Inc., 2017.
[12] P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. Analysis and Numerical Solution, EMS Publishing House, Z¨urich, Switzerland, 2006.
[13] P. Kunkel and V. Mehrmann, Canonical forms for linear differential-algebraic equations with variable coefficients, J. Comput. Appl. Math. 56 (1994) 225—259.
[14] R. Lamour, R. Marz and C. Tischendorf, Differential-algebraic equations: a projector based analysis, Springer Science & Business Media, 2013.
[15] E. L. Lewis, A Survey of Linear Singular System, Circuits Proc. Int. Symp. Singular System, Atlanta, 1987.
[16] F. Magri, Variational formulation for every linear equation, Int. J. Eng. Sci. 12 (1974) 537–549.
[17] R. Marz, Numerical methods for differential-algebraic equations, Acta Numerica 1 (1992) 141—198.
[18] R. Marz, Differential-algebraic equation from a functional-analytic viewpoint, A Survey., 2013.
[19] V.K. Mishra and N.K. Tomar, On complete and strong controllability for rectangular descriptor systems, Circuits Syst. Signal Proc. 35 (2016) 1395—1406.
[20] V.K. Mishra, N.K. Tomar and M.K. Gupta, On controllability and normalizability for linear descriptor systems, J. Control Aut. Elect. Syst. 27 (2016) 19-–28.
[21] P. Rabier and W. Rheinboldt, Techniques of Scientific Computing (part 4)- Theoretical and Numerical Analysis of Differential–Algebraic Equations, Handbook of Numerical Analysis, VIII, pp. 183–540. North Holland/Elsevier, Amsterdam, 2002.
[22] R.K. Rektorys, Variational Methods in Mathematics, Science and Engineering, Reidel Pub. Company, London,1980.
[23] G. Ren Duan, Analysis and Design of Descriptor Linear System, Springer, New York Dordrecht Heidelberg London, 2010.
[24] E. Tonti, Variational formulation of nonlinear differential equations, Bull. Acad. Roy. Belgique, 5 Serie, 137–165 (first part); 262-278 (second part), 1969.
[25] E. Zeidler, Applied Functional Analysis, Main Principles and Their Applications, Applied Mathematical Sciences 109, Springer-Verlag New York Inc., 1995.
[26] S.M. Zhuk, Closedness and normal solvability of an operator generated by a degenerate linear differential equation with variable coeficients, Nonlinear Oscill. 10, 0 (2007). https://doi.org/10.1007/s11072-008-0005-9