[1] R. Agarwal, S. Jain, R.P. Agarwal, Analytic solution of generalized space time fractional reaction–diffusion equation, Fract Differ Calc, 7(2017), 169-84.
[2] H. Aminikhah, A.R. Sheikhani, H. Rezazadeh, Exact solutions for the fractional differential equations by using
the first integral method, Nonlinear Engineering, 4(1)(2015), 15-22.
[3] Y. Chen, M. Yi, C. Yu, Error analysis for numerical solution of fractional differential equation by Haar wavelets
method, Journal of Computational Science, 3(5)(2012), 367-373.
[4] E.H. Doha, M.A. Abdelkawy, A.Z.M. Amin, A. M. Lopes, On spectral methods for solving variable-order fractional
integro–differential equations, Computational and Applied Mathematics, 37(3)(2018), 3937-3950.
[5] I.L. El-Kalla, Convergence of the Adomian method applied to a class of nonlinear integral equations, Applied
Mathematics Letters, 21(4)(2008), 372–376.[6] R. Garra, R. Gorenflo, F. Polito, Z. Tomovski, ˇ Hilfer-Prabhakar derivatives and some applications, Applied
mathematics and computation, 242(2014), 576-589.
[7] R. Garra, R. Garrappa, The Prabhakar or three parameters Mittag-Leffler function: Theory and application,
Communications in Nonlinear Science and Numerical Simulation, 56(2018), 314-329.
[8] R. Garrappa, Gr¨unwald–Letnikov operators for fractional relaxation in Havriliak-Negamimodels, Commun Nonlinear Sci Numer Simul 38(2016), 178–191.
[9] R. Garra, R. Garrappa, The Prabhakar or three parameters Mittag–Leffler function: Theory and application,
Communications in Nonlinear Science and Numerical Simulation, 56(2018), 314-329.
[10] A. Giusti, I. Colombaro, Prabhakar-like fractional viscoelasticity, Communications in Nonlinear Science and Numerical Simulation, 56(2018), 138-143.
[11] A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, M. Popolizio, F. Mainardi, A practical guide to
Prabhakar fractional calculus, Fractional Calculus and Applied Analysis, 23(1)(2020), 9-54.
[12] B. Guo, X. Pu, F. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, World Scientific Publishing, Singapore, 2015.
[13] R.K. Gupta, B.S. Shaktawat, D. Kumar, Certain relation of generalized fractional calculus associated with the
generalized Mittag-Leffler function. J. Raj. Acad. Phy. Sci, 15(3)(2016), 117-126.
[14] M.M. Hosseini, Adomian decomposition method for solution of nonlinear differential algebraic equations, Applied
mathematics and computation, 181(2)(2006), 1737-1744.
[15] M. Ichise, Y. Nagayanagi, T. Kojima, An analog simulation of non-integer order transfer functions for analysis of
electrode processes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 33(2)(1971), 253-265.
[16] S. Khubalkar, A. Junghare, M. Aware, S. Das, Unique fractional calculus engineering laboratory for learning and
research, International Journal of Electrical Engineering Education, 57(1)(2020), 3-33.
[17] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations , Elsevier
Science Limited, 2006.
[18] J. Lai, S. Mao, J. Qiu, H. Fan, Q. Zhang, Z. Hu, J. Chen, Investigation progress and applications of fractional
derivative model in geotechnical engineering, Mathematical Problems in Engineering, 2016.
[19] F. Mainardi, R. Garrappa, On complete monotonicity of the Prabhakar function and non-Debye relaxation in
dielectrics, Journal of Computational Physics, 293(2015), 70-80.
[20] M. Mashoof, A.H.R. Sheikhani, Numerical Solution of Fractional Control System by Haar-wavelet Operational
Matrix Method, Int. J. Industrial Mathematics, 8(2016), 289-298.
[21] M. Mashoof, A.H.R. Sheikhani, H.S. Najafi, Stability Analysis of Distributed-Order Hilfer-Prabhakar Systems
Based on Inertia Theory, Mathematical Notes, 104(1-2)(2018), 74-85.
[22] M. Mashoof, A.H.R. Sheikhani, H.S. Naja, Stability analysis of distributed order Hilfer-Prabhakar differential
equations, Hacettepe Journal of Mathematics and Statistics, 47(2)(2018), 299-315.
[23] A. Mohebbi, M. Saffarian, Implicit RBF Meshless Method for the Solution of Two-dimensional Variable Order
Fractional Cable Equation, Journal of Applied and Computational Mechanics, 6(2)(2020), 235-247.
[24] S. Momani, Z. Odibat, V.S. Erturk, Generalized differential transform method for solving a space and time
fractional diffusion wave equation, Physics Letters A, 370(5-6)(2007), 379-387.
[25] H.S. Najafi, S.A. Edalatpanah, A.R.H. Sheikhani, Convergence analysis of modified iterative methods to solve
linear systems, Mediterranean journal of mathematics, 11(3)(2014), 1019-1032.
[26] Z.M. Odibat, A study on the convergence of variational iteration method, Mathematical and Computer Modelling,
51(9-10)(2010), 1181-1192.
[27] M.D. Ortigueira, Fractional calculus for scientists and engineers, Springer Science & Business Media, 2011.
[28] S.C. Pandey, The Lorenzo–Hartley’s function for fractional calculus and its applications pertaining to fractional
order modelling of anomalous relaxation in dielectrics, Computational and Applied Mathematics, 37(3)(2018),
2648-2666.
[29] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential
equations, to methods of their solution and some of their applications, Elsevier, 1998.
[30] T.R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, 1971.
[31] F. Shariffar, A.H.R. Sheikhani, A New Two-stage Iterative Method for Linear Systems and Its Application in
Solving Poissons Equation, International Journal of Industrial Mathematics, 11(4)(2019), 283–291.
[32] F. Shariffar, A.H.R. Sheikhani, H.S. Najafi, An efficient chebyshev semi-iterative method for the solution of
large systems, University Politehnica of Bucharest Scientific Bulletin-Series A Applied Mathematics and Physics.
80(4)(2018), 239-252.
[33] A.H.R. Sheikhani, M. Mashoof, A Collocation Method for Solving Fractional Order Linear System, Journal of the
Indonesian Mathematical Society, 23(1)(2017), 27-42.[34] M.A. Snyder, Chebyshev methods in numerical approximation , Prentice-Hall, 1966.
[35] H.M. Srivastava, R.K. Saxena, T.K. Pogany, R. Saxena, Integral transforms and special functions, Applied Mathematics and Computation, 22(7)(2011), 487-506.
[36] K. Sun, M. Zhu, Numerical algorithm to solve a class of variable order fractional integral-differential equation
based on Chebyshev polynomials, Mathematical Problems in Engineering, 2015.
[37] H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional
calculus in science and engineering, Communications in Nonlinear Science and Numerical Simulation, 64(2018),
213-231.
[38] Y. Xu, V. Ert¨urk, A finite difference technique for solving variable order fractional integro-differential equations,
Bulletin of the Iranian Mathematical Society, 40(3)(2014), 699-712
[39] M. Zayernouri, G.E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order
FPDEs, Journal of Computational Physics, 293(2015), 312-338.