[1] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of impulsive differential equations, World Scientific Singapore, 1989.
[2] A. M. Samoilenko and N. A. Perestyuk, Impulsive differential equations, World Scientific Singapore, 1995.
[3] J.H. Liu, Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impul. Syst. 6(1) (1999) 77–85.
[4] J. Wang, Y. Zhou and M. Medved, Picard and weakly Picard operators technique for nonlinear differential equations in Banach spaces, J. Math. Anal. Appl. 389(1) (2012) 261–274.
[5] E. Hern´andez and D. O’regan, Existence results for a class of abstract impulsive differential equations, Bull. Aust. Math. Soc. 87 (2013) 366–385.
[6] J. Wang, Mi. Feckan and Y. Zhoud, On the stability of first order impulsive evolution equations, Opuscula Mathematica, 34(3) (2014) 639–657.
[7] X. Haoa and L. Liua, Mild solution of semilinear impulsive integrodifferential evolution equation in Banach spaces, Math. Meth. Appl. Sci. 40(13) (2017) 4832–4841.
[8] A. Zada, U. Riaz and F.U. Khan, Hyers–Ulam stability of impulsive integral equations, Bollettino dell’Unione Matematica Italiana (2018) 1–15.
[9] J. Wang and Y. Zhang, Existence and stability of solutions to nonlinear impulsive differential equations in βnormed spaces, Elect. J. Diff. Equ. 2014(83) (2014) 1–10.
[10] K.D. Kucche and P.U. Shikhare, On impulsive delay integrodifferential equations with integral impulses, Mediterranean Journal of Mathematics, 17(4) (2020) 1–22.
[11] M. Frigon and D. O’regan, Existence results for first-order impulsive differential equations, J. Math. Anal. Appl. 193 (1995) 96–113.
[12] J. Wang, Mi. Feckan and Y. Zhoud, Ulam’s type stability of impulsive ordinary differential equations, J. Math. Anal. Appl. 395 (2012) 258–264.
[13] A. Anguraj and M.M. Arjunan, Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Elect. J. Diff. Equ. 2005(111) (2005), 1–8.
[14] V. Muresan, Existence, uniqueness and data dependence for the solutions of some integro-differential equations of mixed type in Banach space, Zeits. Anal. Anwend. 23(1) (2004) 205–216.
[15] M. Campiti, Second-order differential operators with non-local Vencel’s boundary conditions, Constr. Math. Anal. 2 (4) (2019) 144–152.
[16] C. Park, S. Yun, J.R. Lee and D.Y. Shin, Set-valued additive functional equations, Constr. Math. Anal. 2(2) (2019) 89–97.
[17] I. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math. 26(1) (2010) 103–107.
[18] I. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babe¸s-Bolyai Math. 54(4) (2009) 125–133.
[19] K. D. Kucche and M. B. Dhakne, On existence results and qualitative properties of mild solution of semilinear mixed Volterra–Fredholm functional integrodifferential equations in Banach spaces, Appl. Math. Comput. 219 (2013) 10806–10816.
[20] K. D. Kucche and M. B. Dhakne, Existence of solution via integral inequality of Volferra-Fredholm neutral functional integrodifferential equations with infinite delay, Int. J. Diff. Eq. Article ID 784956 (2014) 13 pages.
[21] K. D. Kucche and P. U. Shikhare, Ulam–Hyers stability of integrodifferential equations in Banach spaces via Pachpatte’s inequality, Asian–European J. Math. 11(2) 1850062 (2018) 19 pages.
[22] K. D. Kucche and P. U. Shikhare, Ulam stabilities for nonlinear Volterra–Fredholm delay integrodifferential equations, Int. J. Nonlinear Anal. Appl. 9(2) (2018) 145–159.
[23] K. D. Kucche and P. U. Shikhare, Ulam stabilities via Pachpatte’s inequality for Volterra–Fredholm delay integrodifferential equations in Banach spaces, Note Mate. 38(1) (2018) 67–82.
[24] K.D. Kucche and P.U. Shikhare, Ulam stabilities for nonlinear Volterra delay integrodifferential equations, J. Contemp. Math. Anal. 54(5) 276–287.
[25] B.G. Pachpatte, Inequalities for Differential and Integral Equations, Academic Press, New York, 1998.
[26] B.G. Pachpatte, Integral and Finite Difference Inequalities and Applications, North-Holland Mathematics Studies, 205, Elsevier Science, B.V., Amsterdam, 2006.
[27] D.D. Bainov and S.G. Hristova, Integral inequalities of Gronwall type for piece-wise continuous functions, J. Appl. Math. Stoch. Anal. 10(1) (1997) 89–94.
[28] I.A. Rus, Picard operators and well-posedness of fixed point problems, Stud. Univ. Babe¸s-Bolyai Math. 52(3) (2007) 147–156.
[29] D. Otrocol and V. Ilea, Qualitative properties of a functional differential equation, Elect. J. Qual. Theory Diff. Equ. 47 (2014) 1–8.
[30] A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1983.