[1] K. Ahangari, S. R. Moeinossadat, and D. Behnia, Estimation of tunnelling-induced settlement by modern intelligent methods, Soils Found., 55, (4) (2015) 737–748, doi: 10.1016/j.sandf.2015.06.006.
[2] D. Basak, S. Pal, and D. C. Patranabis, Support vector regression, Neural Inf. Process. Rev., 11 (10)(2007)
203–224.
[3] A. Bobet, Analytical Solutions for Shallow Tunnels in Saturated Ground, J. Eng. Mech., 127 (12)(2001) 1258–1266,
doi: 10.1061/(ASCE)0733-9399(2001)127:12(1258).
[4] A. F. Cabalar, A. Cevik, and C. Gokceoglu, Some applications of Adaptive Neuro-Fuzzy Inference System (ANFIS)
in geotechnical engineering, Comput. Geotech., 40 (2012) 14–33, doi: 10.1016/j.compgeo.2011.09.008.
[5] R. P. Chen, J. Zhu, W. Liu, and X. W. Tang, Ground movement induced by parallel EPB tunnels in silty soils,
Tunn. Undergr. Sp. Technol., 26 (1)(2011) 163–171, doi: 10.1016/j.tust.2010.09.004.
[6] C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn., 20 (3)(1995) 273–297, doi: 10.1007/BF00994018.[7] S. R. Dindarloo and E. Siami-Irdemoosa, Maximum surface settlement based classification of shallow tunnels in
soft ground, Tunn. Undergr. Sp. Technol., 49 (2015) 320–327, doi: 10.1016/j.tust.2015.04.021.
[8] A. M. Ghaedi and A. Vafaei, Applications of artificial neural networks for adsorption removal of dyes from aqueous
solution: A review, Adv. Colloid Interface Sci., vol. 245, no. April, (2017) 20–39, doi: 10.1016/j.cis.2017.04.015.
[9] S. R. Gunn, Support vector machines for classification and regression, Southampton, 1998.
[10] S. Hansbo, Consolidation of clay by band-shaped prefabricated vertical drains, Gr. Eng., 12, (5)(1979) 16–27.
[11] Y. Huang, J. Li, and J. Fu, Review on Application of Artificial Intelligence in Civil Engineering, Comput. Model.
Eng. Sci., 121 (3) (2019) 845–875, doi: 10.32604/cmes.2019.07653.
[12] G. T. K. Lee and C. W. W. Ng, Effects of Advancing Open Face Tunneling on an Existing Loaded Pile, J. Geotech.
Geoenvironmental Eng., 131 (2)(2005) 193–201, doi: 10.1061/(ASCE)1090-0241(2005)131:2(193).
[13] L. Liu, H. Moayedi, A. S. A. Rashid, S. S. A. Rahman, and H. Nguyen, Optimizing an ANN model with genetic
algorithm (GA) predicting load-settlement behaviours of eco-friendly raft-pile foundation (ERP) system, Eng.
Comput., 36 (1) (2020) 421–433, doi: 10.1007/s00366-019-00767-4.
[14] N.-V. Luat, V.-Q. Nguyen, S. Lee, and K. Lee, An evolutionary hybrid optimization of MARS model in
predicting settlement of shallow foundations on sandy soils, Geomech. Eng., 21 (6)(2020) 583–598, doi:
10.12989/gae.2020.21.6.583.
[15] R. C. Mamat, A. M. Samad, A. Kasa, S. F. M. Razali, A. Ramli, and M. B. H. C. Omar, Slope stability prediction
of road embankment on soft ground treated with prefabricated vertical drains using artificial neural network, IAES
Int. J. Artif. Intell., 9 (2)(2020) 236–243, doi: 10.11591/ijai.v9.i2.pp236-243.
[16] R. C. Mamat, A. Kasa, S. F. M. Razali, A. M. Samad, A. Ramli, and M. R. M. Yazid, Application of artificial intelligence in predicting ground settlement on earth slope, AIP Conf. Proc., 2138 (2019) 040015, doi:
10.1063/1.5121094.
[17] R. C. Mamat, A. Ramli, A. M. Samad, A. Kasa, S. F. M. Razali, and M. B. H. C. Omar, Artificial neural networks
in slope of road embankment stability applications: a review and future perspectives, Int. J. Adv. Technol. Eng.
Explor., 8 (75)(2021). 304–319, doi: 10.19101/IJATEE.2020.762127.
[18] S. Men, L. Yan, J. Liu, H. Qian, and Q. Luo, A Classification Method for Seed Viability Assessment with Infrared
Thermography, Sensors, 17 (4) (2017) 845, doi: 10.3390/s17040845.
[19] M. R. Moghaddasi and M. Noorian-Bidgoli, ICA-ANN, ANN and multiple regression models for prediction of surface settlement caused by tunneling, Tunn. Undergr. Sp. Technol., 79 (2018) 197–209, doi:
10.1016/j.tust.2018.04.016.
[20] M. Mohammed, A. Sharafati, N. Al-Ansari, and Z. M. Yaseen, Shallow Foundation Settlement Quantification:
Application of Hybridized Adaptive Neuro-Fuzzy Inference System Model, Adv. Civ. Eng., (2020) 7381617, doi:
10.1155/2020/7381617.
[21] J. A. Nasiri, N. M. Charkari, and S. Jalili, Least squares twin multi-class classification support vector machine,
Pattern Recognit., 48 (3) (2015) 984–992, doi: 10.1016/j.patcog.2014.09.020.
[22] O. Okwuashi and C. Ndehedehe, Tide modelling using support vector machine regression, J. Spat. Sci., 62 (1)
(2017) 29–46, doi: 10.1080/14498596.2016.1215272.
[23] A. Pourtaghi and M. A. Lotfollahi-Yaghin, Wavenet ability assessment in comparison to ANN for predicting
the maximum surface settlement caused by tunneling, Tunn. Undergr. Sp. Technol., 28 (1)(2012) 257–271, doi:
10.1016/j.tust.2011.11.008.
[24] A. J. Smola and B. Sch¨olkopf, A tutorial on support vector regression, Stat. Comput., 14 (3)(2004) pp. 199–222,
doi: 10.1023/B:STCO.0000035301.49549.88.
[25] L. V. Utkin and Y. A. Zhuk, An one-class classification support vector machine model by interval-valued training
data, Knowledge-Based Syst., 120 (2017) 43–56, doi: 10.1016/j.knosys.2016.12.022.
[26] A. Verruijt and J. R. Booker, Surface settlements due to deformation of a tunnel in an elastic half plane,
G´eotechnique, 46 (4) (1996) 753–756, doi: 10.1680/geot.1996.46.4.753.
[27] F. Wang, B. Gou, and Y. Qin, Modeling tunneling-induced ground surface settlement development using a wavelet smooth relevance vector machine, Comput. Geotech., 54 (2013) 125–132, 2013, doi:
10.1016/j.compgeo.2013.07.004.
[28] C. Yoo, Settlement behavior of embankment on geosynthetic-encased stone column installed soft ground – A
numerical investigation, Geotext. Geomembranes, 43 (6) (2015) 484–492, doi: 10.1016/j.geotexmem.2015.07.014.
[29] P. Zhang, H.-N. Wu, R.-P. Chen, and T. H. T. Chan, Hybrid meta-heuristic and machine learning algorithms for
tunneling-induced settlement prediction: A comparative study, Tunn. Undergr. Sp. Technol., 99 (2020) 103383,
doi: 10.1016/j.tust.2020.103383.
[30] L. Zhang, M. Zhao, Y. Hu, H. Zhao, and B. Chen, Semi-analytical solutions for geosynthetic-reinforced and
pile-supported embankment, Comput. Geotech., 44 (2012) 167–175, doi: 10.1016/j.compgeo.2012.04.001.[31] J. Zhou, X. Sh, K. Du, X. Qiu, X. Li, and H. S. Mitri, Feasibility of random-forest approach for prediction of
ground settlements induced by the construction of a shield-driven tunnel, Int. J. Geomech., 17 (6) (2017), doi:
10.1061/(ASCE)GM.1943-5622.0000817.
[32] Y. Zhou, W. Su, L. Ding, and H. Luo, Predicting Safety Risks in Deep Foundation Pits in Subway Infrastructure Projects: Support Vector Machine Approach, J. Comput. Civ. Eng., 31 (5) (2017) 04017052, doi:
10.1061/(ASCE)CP.1943-5487.0000700.