[1] D. Afchar, V. Nozick, J. Yamagishi and I. Echizen, MesoNet: A compact facial video forgery detection network, 10th IEEE Int. Work Inf. Forensics Secur. WIFS 2018, (2019).
[2] I. Amerini, L. Galteri, R. Caldelli and A. Del Bimbo, Deepfake video detection through optical flow based CNN, Proc. IEEE/CVF Int. Conf. on Comput. Vis. (ICCV) Workshops, 2019.
[3] A. Bharati, R. Singh, M. Vatsa and K. Bowyer, Detecting facial retouching using supervised deep learning, IEEE Transactions on Inf. Forens. Secur. 11(9) (2016) 1903–1913.
[4] BBC Bitesize, Deepfakes: What Are They and Why Would I Make One?, www.bbc.co.uk, 2019.
[5] C. Bregler, M. Covell and M. Slaney, Video rewrite: driving visual speech with audio, Proc. 24th Annu. Conf. Comput. Graph Interact Tech SIGGRAPH 1997 (1997) 353-360.
[6] W. Cho, S. Choi, D.K. Park, I. Shin and J. Choo, Image-to-image translation via group-wise deep whitening-and coloring transformation, Proceedings-2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019, IEEE Computer Society, 2019-June (2019) 10639–10647.
[7] Y. Choi, M. Choi, M. Kim, J.W. Ha, S. Kim and J. Choo, StarGAN: unified generative adversarial networks for multi-domain image-to-image translation, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (2018) 8789–8797.
[8] H. Dang, F. Liu, J. Stehouwer, X. Liu and A.K. Jain, On the detection of digital face manipulation, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (2020) 5780–5789.
[9] B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang and C.C. Ferrer, The deepfake detection challenge (dfdc) dataset, arXiv preprint arXiv:2006.07397, 2020.
[10] H. Farid, Image forgery detection, IEEE Signal Processing Magazine 26(2) (2009) 16–25.
[11] J. Galbally, S. Marcel and J. Fierrez, Biometric antispoofing methods: A survey in face recognition, IEEE Access 2 (2014) 1530–1552.
[12] H. Guan, M. Kozak, E. Robertson, Y. Lee, A. Yates, A. Delgado, D. Zhou, T. Kheyrkhah, J. Smith and J. Fiscus, MFC datasets: large-scale benchmark datasets for media forensic challenge evaluation, in Proc. IEEE Winter Applications of Computer Vision Workshops, 2019.
[13] L. Guarnera, O. Giudice and S. Battiato, DeepFake detection by analyzing convolutional traces, IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work, 2020 (2020) 2841–2850.
[14] D. Guera and E.J. Delp, Deepfake video detection using recurrent neural networks, Proc. AVSS 2018 - 2018 15th IEEE Int. Conf. Adv. Video Signal-Based Surveill, 2019.
[15] Z. He, W. Zuo, M. Kan, S. Shan and X. Chen, AttGAN: Facial attribute editing by only changing what you want, IEEE Trans. Image Process, 28(11) (2019) 5464–5478.
[16] N. Hulzebosch, S. Ibrahimi and M. Worring, Detecting CNN-generated facial images in real-world scenarios, IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit Work, 2020 (2020) 2729–2738.
[17] A. Jain, R. Singh and M. Vatsa, On detecting GANs and retouching based synthetic alterations, 2018 IEEE 9th Int. Conf. Biometrics Theory, Appl. Syst. BTAS 2018 (2018).
[18] T. Jung, S. Kim and K. Kim, Deepvision: deepfakes detection using human eye blinking pattern, IEEE Access. 8 (2020) 83144–83154.
[19] T. Karras, T. Aila, S. Laine and J. Lehtinen, Progressive growing of GANs for improved quality, stability, and variation, 6th Int. Conf. Learn Represent ICLR 2018 – Conf. Track Proc. (2018) 1–26.
[20] T. Karras, S. Laine and T. Aila, A style-based generator architecture for generative adversarial networks, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2019 (2019) 4396–4405.
[21] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen and T. Aila, Analyzing and improving the image quality of stylegan, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2020 (2020) 8107–8116.
[22] D.P. Kingma and M. Welling, Auto-encoding variational bayes, 2nd Int. Conf. Learn Represent ICLR 2014 – Conf. Track Proc. 2014 (2014) 1–14.
[23] P. Korshunov and S. Marcel, Deepfakes: A new threat to face recognition? Assessment and detection, arXiv, 2018.
[24] P. Korus, Digital image integrity – a survey of protection and verification techniques, Digit. Signal Process, Rev. J. 71 (2017) 1–26.
[25] Y. Li and S. Lyu, Exposing deepfake videos by detecting face warping artifacts, arXiv, 2018.
[26] C. Li, K. Xu, J. Zhu and B. Zhang, Triple generative adversarial nets, Adv. Neural Inf. Process Syst. 2017 (2017) 4089–4099.
[27] W.S. Lin, S.K. Tjoa, H.V. Zhao and K.J.R. Liu, Digital image source coder forensics via intrinsic fingerprints, IEEE Trans. Inf. Forensics Secur. 4(3) (2009) 460–475.
[28] M. Liu, Y. Ding, M. Xia, X. Liu, E. Ding, W. Zuo and S. Wen, STGAN: A unified selective transfer network for arbitrary image attribute editing, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2019 (2019) 3668–3677.
[29] S. Marcel, M. Nixon, J. Fierrez and N. Evans, Handbook of Biometric Anti-Spoofing (2nd Edition), Springer, 2019.
[30] F. Marra, C. Saltori, G. Boato and L. Verdoliva, Incremental learning for the detection and classification of GAN-generated images, 2019 IEEE Int. Work Inf. Forensics Secur. WIFS 2019 (2019).
[31] F. Matern, C. Riess and M. Stamminger, Exploiting visual artifacts to expose deepfakes and face manipulations, in Proc. IEEE Winter Applications of Computer Vision Workshops, 2019.
[32] S. McCloskey and M. Albright, Detecting GAN-generated imagery using color cues, arXiv, 2018.
[33] L. Nataraj, T.M. Mohammed, B.S. Manjunath, S. Chandrasekaran, A. Flenner, J.H. Bappy and A.K. Roy-Chowdhury, Detecting GAN generated fake images using co-occurrence matrices, IS& T Int. Symp. Electron Imaging Sci. Technol. 2019(5) (2019) 1–7.
[34] J.C. Neves, R. Tolosana, R. Vera-Rodriguez, V. Lopes, H. Proen¸ca and J. Fierrez, GANprintR: Improved fakes and evaluation of the state of the art in face manipulation detection, IEEE J. Sel. Top Signal Process 14(5) (2020) 1038–1048.
[35] H.M. Nguyen and R. Derakhshani, Eyebrow recognition for identifying deepfake videos, BIOSIG 2020 – Proc. 19th Int. Conf. Biometrics Spec. Interes. Gr. (2020) 1–6.
[36] H.H. Nguyen, F. Fang, J. Yamagishi and I. Echizen, Multi-task learning for detecting and segmenting manipulated facial images and videos, 2019 IEEE 10th Int. Conf. Biometrics Theory, Appl. Syst. BTAS 2019 (2019).
[37] H.H. Nguyen, J. Yamagishi and I. Echizen, Use of a capsule network to detect fake images and videos, arXiv, 2019.
[38] O.M. Parkhi, A. Vedaldi and A. Zisserman, Deep face recognition, Visual Geometry Group Department of Engineering Science University of Oxford, (2015) 1–12.
[39] C. Rathgeb, A. Botaljov, F. Stockhardt, S. Isadskiy, L. Debiasi, A. Uhl and C. Busch, PRNU-based detection of facial retouching, IET Biomet. 9(4) (2020) 154–164.
[40] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies and M. Niessner, FaceForensics++: Learning to detect manipulated facial images, Proc. IEEE Int. Conf. Comput. Vis. 2019 (2019) 1–11.
[41] E. Sabir, J. Cheng, A. Jaiswal, W. AbdAlmageed, I. Masi and P. Natarajan, Recurrent convolutional strategies for face manipulation detection in videos, arXiv, 2019.
[42] F. Schroff, D. Kalenichenko and J. Philbin, FaceNet: A unified embedding for face recognition and clustering, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (2015) 815–823.
[43] S. Tariq, S. Lee, H. Kim, Y. Shin and S. Woo, Detecting both machine and human created fake face images in the wild, Proc. Int. Workshop Multimedia Priv. Secur.(2018) 81–87.
[44] J. Thies, M. Zollh¨ofer, M. Stamminger, C. Theobalt and M. Nießner, Face2face, Commun. ACM. 62(1) (2018) 96–104.
[45] J. Thies, M. Zollh¨ofer, M. Stamminger, C. Theobalt and M. Nießner, Deferred neural rendering: image synthesis using neural textures, ACM. Trans. Graph. 38(4) (2019).
[46] R. Tolosana, S. Romero-Tapiador, J. Fierrez and R. Vera-Rodriguez, Deepfakes evolution: analysis of facial regions and fake detection performance, Lect. Notes Comput. Sci. (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics), (2021) 12665.
[47] R. Wang, F. Juefei-Xu, L. Ma, X. Xie, Y. Huang, J. Wang and Y. Liu, Fakespotter: a simple yet robust baseline for spotting ai-synthesized fake faces, IJCAI Int. J. T. Conf. Artif. Intell. 2020 (2021) 3444–3451.
[48] S.Y. Wang, O. Wang, R. Zhang, A. Owens and A. Efros, Detecting photoshopped faces by scripting photoshop, Proc. IEEE Int. Conf. Comput. Vis. 2019 (2019) 10071–10080.
[49] X. Yang, Y. Li and S. Lyu, Exposing deep fakes using inconsistent head poses, ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process-Proc. 2019 (2019) 8261–8265.
[50] N. Yu, L. Davis and M. Fritz, Attributing fake images to GANs: learning and analyzing GAN fingerprints, Proc. IEEE Int. Conf. Comput. Vis. 2019 (2019) 7555–7565.
[51] X. Zhang, S. Karaman and S.F. Chang, Detecting and simulating artifacts in GAN fake images, 2019 IEEE Int. Work Inf. Forensics Secur. WIFS 2019 (2019).
[52] P. Zhou, X. Han, V.I. Morariu and L.S. Davis, Two-stream neural networks for tampered face detection, IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit Work 2017 (2017) 1831–1839.