A self-adaptive hybrid inertial algorithm for split feasibility problems in Banach spaces

Document Type : Research Paper

Authors

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa

Abstract

In this paper, we introduce a new self-adaptive hybrid algorithm of inertial form for solving Split Feasibility Problem (SFP) which also solve a Monotone Inclusion Problem (MIP) and a Fixed Point Problem (FPP) in $p$-uniformly convex and uniformly smooth Banach spaces. Motivated by the self-adaptive technique, we incorporate the inertial technique to accelerate the convergence of the proposed method.Under standard and mild assumption of monotonicity of the SFP associated mapping, we establish the strong convergence of the sequence generated by our algorithm which does not require a prior knowledge of the norm of the bounded linear operator. Some numerical examples are presented to illustrate the performance of our method as well as comparing it with some related methods in the literature.

Keywords

[1] T.O. Alakoya, L.O. Jolaoso, and O.T. Mewomo, A self-adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications, J. Ind. Manag. Optim., (2020), http://dx.doi.org/10. 3934/jimo.2020152.
[2] T.O. Alakoya, L.O. Jolaoso, and O.T. Mewomo, Strong convergence theorems for finite families of pseudomonotone equilibrium and fixed point problems in Banach spaces, Afr. Mat. , 32 (2021), 897–923.
[3] T.O. Alakoya, A.O.E. Owolabi, and O.T. Mewomo, An inertial algorithm with a self-adaptive step size for a split equilibrium problem and a fixed point problem of an infinite family of strict pseudo-contractions, J. Nonlinear Var. Anal., 5 (2021) 803-829.
[4] T.O. Alakoya, A. Taiwo, O.T. Mewomo, and Y.J. Cho, An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings, Ann. Univ. Ferrara Sez. VII Sci. Mat., 67 (1) (2021) 1-31.
[5] T.O. Alakoya, L.O. Jolaoso, A. Taiwo, and O.T. Mewomo, Inertial algorithm with self-adaptive step size for split common null point and common fixed point problems for multivalued mappings in Banach spaces, Optimization, (2021) 1-35, http://dx.doi.org/10.1080/02331934.2021.1895154.
[6] S.M. Alsulami, and W. Takahashi, Iterative methods for the split feasibility problems in Banach spaces, J. Nonlinear Convex Anal., 16 (2015) 585-596.
[7] Q. H. Ansari, and A. Rehan, Split feasibility and fixed point problems, Ansari, Q. H. (ed), Nonlinear Analysis: Approximation Theory, Optimization and Application, pp. 281 - 322, Springer, New York (2014).
[8] C. Byrne, Iterative oblique projection onto convex subsets and the split feasibility problem, Inverse Probl., 18 (2)(2002) 441 - 453.
[9] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004) 103-120.
[10] Y. Censor, and T. Elfving, A multi-projection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (2)(1994) 221-239.
[11] Y. Censor, T. Elfving, N. Kopf, and T. Bortfeld, The multiple sets split feasiblity problem and its application for inverse problems, Inverse Probl., 21 (2005) 2071-2084.
[12] Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006) 2353-2365.
[13] C. E. Chidume, Geometric properties of Banach Spaces and Nonlinear Iterations, Lecture Notes in Mathematics 1965, Springer - London, 2009.
[14] P. Chuasuk, A. Farajzadeh, and A. Kaewcharoen, An iterative algorithm for solving split feasibility problems and fixed point problems in p-uniformly convex and smooth Banach spaces, J. Comput. Anal. Appl., 28 (1) (2020) 49-66.
[15] H. Dehghan, C. Izuchukwu, O. T. Mewomo, D. A. Taba, and G. C. Ugwunnadi, Iterative algorithm for a family of monotone inclusion problems in CAT(0) spaces, Quaest. Math., 43 (7) (2020) 975–998.
[16] E.C. Godwin, C. Izuchukwu, and O.T. Mewomo, An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces, Boll. Unione Mat. Ital., 14 (2) (2021) 379-401.
[17] J.N. Ezeora, C. Izuchukwu, A. A. Mebawondu, and O.T. Mewomo, Approximating Common Fixed Point of Mean Nonexpansive Mappings in hyperbolic spaces, J. Nonlinear Anal. Appl., 12 (1) (2021) 231-244.
[18] O.S. Iyiola, and Y. Shehu, A cyclic iterative method for solving multiple sets split feasibility problems in Banach Spaces, Quaest. Math., 39 (7)(2016) 959-975.
[19] C. Izuchukwu, A.A. Mebawondu, and O.T. Mewomo, A new method for solving split variational inequality problems without co-coerciveness, J. Fixed Point Theory Appl., 22 (4) (2020), Art. No. 98, 23 pp.
[20] C. Izuchukwu, G.N. Ogwo, and O.T. Mewomo, An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions, Optimization (2020),http://dx.doi.org/10.1080/02331934.2020.1808648.
[21] L.O. Jolaoso, T.O. Alakoya, A. Taiwo and O.T. Mewomo, A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. Palermo II, 69 (3) (2020) 711-735.
[22] L.O. Jolaoso, T.O. Alakoya, A. Taiwo and O.T. Mewomo, Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space, Optimization, 70 (2) (2021) 387-412.
[23] L.O. Jolaoso, F.U. Ogbuisi, and O.T. Mewomo, On split equality variation inclusion problems in Banach spaces without operator norms, Int. J. Nonlinear Anal. Appl., 12 (2021) 425-446.
[24] L.O. Jolaoso, A. Taiwo, T.O. Alakoya, and O.T. Mewomo, A strong convergence theorem for solving variational inequalities using an inertial viscosity subgradient extra gradient algorithm with self-adaptive stepsize, Demonstr. Math., (2019), 52 (1) 183-203.
[25] L.O. Jolaoso, A. Taiwo, T.O. Alakoya, and O.T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math., 39 (1) (2020), Paper No. 38, 28 pp.
[26] L.O. Jolaoso, A. Taiwo, T.O. Alakoya, and O.T. Mewomo, Strong convergence theorem for solving pseudomonotone variational inequality problem using projection method in a reflexive Banach space, J. Optim. Theory Appl., 185 (3) (2020) 744-766.
[27] L.-W. Kuo, and D.R. Sahu, Bregman distance and strong convergence of proximal type algorithms, Abstr. Appl. Anal., 2013 (2013), Art. ID5 90519 12 pp.
[28] P. Maing´e, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, Comput. Math. Appl., 59 (2010) 74-79.
[29] O.T. Mewomo, and F.U. Ogbuisi, Convergence analysis of iterative method for multiple set split feasibility problems in certain Banach spaces, Quaest. Math., 41 (1)(2018) 129-148.
[30] G.N. Ogwo, T.O. Alakoya, O.T. Mewomo, Iterative algorithm with self-adaptive step size for approximating the common solution of variational inequality and fixed point problems, Optimization, (2021), http://dx.doi.org/ 10.1080/02331934.2021.1981897.
[31] G. N. Ogwo, C. Izuchukwu, and O.T. Mewomo, A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem, Numer. Algebra Control Optim., (2021) http://dx.doi.org/ 10.3934/naco.2021011.
[32] G. N. Ogwo, C. Izuchukwu, and O.T. Mewomo, Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity, Numer. Algorithms, (2021),http://dx.doi.org/10.1007/ s11075-021-01081-1.
[33] C.C. Okeke, O.T. Mewomo, On split equilibrium problem, variational inequality problem and fixed point problem for multi-valued mappings, Ann. Acad. Rom. Sci. Ser. Math. Appl., 9 (2) (2017) 223–248.
[34] M.A. Olona, T.O. Alakoya, A. O.-E. Owolabi, and O.T. Mewomo, Inertial shrinking projection algorithm with self-adaptive step size for split generalized equilibrium and fixed point problems for a countable family of nonexpansive multivalued mappings, Demonstr. Math., 54 (2021) 47-67.
[35] M.A. Olona, T.O. Alakoya, A. O.-E. Owolabi, and O.T. Mewomo, Inertial algorithm for solving equilibrium, variational inclusion and fixed point problems for an infinite family of strictly pseudocontractive mappings, J. Nonlinear Funct. Anal., 2021 (2021), Art. ID 10, 21 pp.
[36] A. O.-E. Owolabi, T.O. Alakoya, A. Taiwo, and O.T. Mewomo, A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings, Numer. Algebra Control Optim.,(2021) http://dx.doi.org/10.3934/naco.2021004.
[37] O.K. Oyewole, H.A. Abass, and O.T. Mewomo, Strong convergence algorithm for a fixed point constraint split null point problem, Rend. Circ. Mat. Palermo II, 70 (1) (2021) 389–408.
[38] O.K. Oyewole, C. Izuchukwu, C.C. Okeke and O.T. Mewomo, Inertial approximation method for split variational inclusion problem in Banach spaces, Int. J. Nonlinear Anal. Appl., 11 (2) (2020) 285-304.
[39] O.K. Oyewole, O.T. Mewomo, L.O. Jolaoso and S.H. Khan, An extragradient algorithm for split generalized equilibrium problem and the set of fixed points of quasi-φ-nonexpansive mappings in Banach spaces, Turkish J. Math., 44 (4) (2020) 1146–1170.
[40] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964) 1-17.
[41] B. Qu, and N. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Probl., 21 (2005) 1655-1665.
[42] S. Riech, S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., 31 (1)(2010) 22-44.
[43] S. Riech, and S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, B.H. Bauschke, R. Burachik, P. Combettes, V. Elser, D. Luke, H. Wolkowicz(eds) Fixed Point Algorithms for Inverse Problems in Science and Engineering , Springer, New York, 2011, pp 301-306.
[44] F. Sch¨opfer, T. Schuster, and A. K. Louis, An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Probl., 24(5) (2008) 055008.
[45] F. Sch¨opfer, An iterative regularization method for the solution of the split feasibility problem in Banach spaces, PhD Thesis, (2007), Saabrucken.
[46] S.Semmes, Lecture note on an introduction to some aspects of functional analysis, 2: Bounded linear operators, http://maths.rice.edu
[47] Y. Shehu, Iterative methods for split feasibility problems in certain Banach spaces, J. Nonlinear Convex Anal., 16 (12) (2015), 1-15.
[48] Y. Shehu, and O.T. Mewomo, Further investigation into split common fixed point problem for demi contractive operators, Acta. Math. Sin. (Engl. Ser.), 32 (11)(2016) 1357-1376.
[49] S. Suantai, U. Witthayarat, Y. Shehu, and P. Cholamjiak, Iterative methods for the split feasibility problem and the fixed point problem in Banach spaces. Optimization, 68 (5) (2019) 955-980.
[50] S. Suantai, Y. Shehu, and P. Cholamjiak, Nonlinear iterative methods for solving the split common null point problem in Banach spaces, Optim. Methods Softw., 34 (4) (2019) 853-874.
[51] A. Taiwo, T.O. Alakoya, and O.T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces, Numer. Algorithms, 86 (1) (2021) 1359–1389.
[52] A. Taiwo, T.O. Alakoya and O.T. Mewomo, Strong convergence theorem for solving equilibrium problem and fixed point of relatively nonexpansive multi-valued mappings in a Banach space with applications, Asian-Eur. J. Math., 14 (8) (2021), Art. ID 2150137 31 pp.
[53] A. Taiwo, L.O. Jolaoso and O.T. Mewomo, Inertial-type algorithm for solving split common fixed-point problem in Banach spaces, J. Sci. Comput., 86 (12) (2021) 1-30.
[54] A. Taiwo, L.O. Jolaoso, and O.T. Mewomo, Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudo contractive mappings in Hilbert Spaces, J. Ind. Manag. Optim., 17 (5) (2021) 2733-2759.
[55] A. Taiwo, A. O.-E. Owolabi, L.O. Jolaoso, O.T. Mewomo, and A. Gibali, A new approximation scheme for solving various split inverse problems, Afr. Mat., 32 (2021), 369–401.
[56] W. Takahashi, The split feasibility problems in Banach spaces, J. Nonlinear Convex Anal., 15 (6)(2014) 1349-1355.
[57] Z.B Xu, and G.F. Roach, Characteristics inequalities of uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl., 157 (1) (1991) 189-210.
[58] Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Probl., 20 (4)(2004) 1261-1266.
[59] Q. Yang, J. Zhao, Generalized KM theorems and their applications, Inverse Probl., 22 (3)(2006) 833-844.
[60] Y. Yao, W. Jigang, and Y.-C. Liou, Regularized methods for the split feasibility problems, Abstr. Appl. Anal., 2012 (2012), Art. ID 140679, 13 pp.
Volume 13, Issue 1
March 2022
Pages 791-812
  • Receive Date: 11 May 2021
  • Accept Date: 29 September 2021