Modelling the influence of prey switching and optimal foraging on the control of banana weevil Cosmopolites Sordidus(Germar)

Document Type : Review articles


1 Department of Mathematics, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda.

2 Bioversity International-Uganda, P.O.Box 24384, Naguru, Kampala, Uganda.


A mathematical model for the control of the banana weevil  Cosmopolites Sordidus  (Germar) by predatory ant species  is formulated and analyzed. The model incorporates predator switching to a non-dynamic alternative food source, optimal foraging theory and self regulation in both the banana weevil and predatory-ant species! Using Lyapunov's first method, the local stability of the equilibria is established. Furthermore, conditions for the existence of the interior equilibrium are derived and its global stability  established by the Bendixson--Dulac criterion with   periodic orbits  ruled out by  the Poincare--Bendixson theorem. It is determined that intrinsic growth rates and carrying capacities rather than handling time and nutritional value have significant impact on the banana weevils-- predatory ant interaction. Numerical simulations   confirm the theoretical results.


[1] AMK. Abera, CS. Gold and R. van Driesche, Experimental Evaluation of the impacts of two ant species on banana weevil in Uganda, Biol. Contr. 46(2008) 147–157.
[2] AMK. Abera, CS. Gold, R. van Driesche and PE. Ragama, Composition, distribution and relative abundance of ants in banana farming systems in Uganda, Biol. Contr. 40(2007) 168–178.
[3] MA. Aziz–Alaoui and MD. Okiye, Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-Type II schemes, Appl. Math. Lett. 16(2003) 1069–1075.
[4] MA. Aziz–Alaoui, Study of Leslie–Gower–type tritrophic population, Chaos Solitons and Fract. 14(8)(2002) 1275–1293.
[5] S. Banshidhar, Global stability of predator–prey systems with alternative prey, ISRN Biotechnol.(2013), https: //
[6] DS. Boukal and V. Krivan, Lyapunov functions for Lotka–Volterra models with optimal foraging behavior, J. Math. Biol. 39(1999) 493–517.
[7] S. Busenburg, and O. van den Driessche, A method for proving the non- existence of limit cycles, J. Math. Analy. Appl. 172(1993) 463–479.
[8] AG. Dassou, D. Carval, S. Depigny, G. Fansi, and P. Tixier, Ant abundance and Cosmopolites sordidus damage in plantain fields as affected by intercropping, Biol. Contr. 81(2015) 51–57.
[9] JM. Fryxell and P. Lundberg, Diet choice and predator–prey dynamics, Evol. Ecol. 8(1994) 407–421.
[10] JM. Fryxell and P. Lundberg, Individual behavior and community dynamics, Chapman and Hall, London, UK,1997.[11] C. Ganguli, TK. Kar and U. Das,Consequences of providing alternative food to predator in an exploited preypredator system controlled by optimal taxation, Intern. J. Nonlin. Sci. 25(3)(2018) 131–150.
[12] CS. Gold, EB. Karamura, A. Kiggundu, F. Bagamba and AMK. Abera, Geographical shifts in the highland bananas (Musa spp, group AAA-EA) production in Uganda, Intern. J. Sust. Devel. Wor. Ecol. 6(1999) 45–59.
[13] DJ. Greathead, Opportunities for biological control of insect pests in tropical Africa, Revue. Zool. Afr. 100(1986) 85–96.
[14] V. Krivan, Optimal foraging and predator–prey dynamics, Theor. Popul. Biol. 49(1996) 265–290.
[15] V. Krivan and A. Sikder, Optimal foraging and predator–prey dynamics II, Theor. Popul. Biol. 55(1999) 111–126.
[16] V. Krivan and J. Eisner, Optimal foraging and predator–prey dynamics III, Theor. Popul. Biol. 63(2003) 269–279.
[17] BO. Ma, PA. Abrams and CE. Brassil, Dynamics versus instantaneous models of diet choice, Amer. Natur. 162(2003) 668–684.
[18] MW. Murdoch and A. Oaten, Predation and population stability, Adv. Ecol. Res., 9(1975) 11-31.
[19] EC. Oerke, HW. Dehne, Safeguarding production losses in major crops and the role of crop protection, Crop Prot., 23(2004) 275-285.
[20] R. Roche and S. Abreu, Control of the banana weevil, Cosmopolites sordidus by the ant Tetramorium guineense, Cienc. de la Agric. (Cuba) 17(1983) 41–49.
[21] PM. Room, The relative abundances of ant species in Ghana’s cocoa farms, J. Anim. Ecol. 40(1971) 735–751.
[22] DW. Stephens and JR. Krebs, Foraging theory: monographs in behavior and ecology ed., Princeton University Press, Princeton, N.J, 1986.
[23] M. Tansky, Switching effect on predator prey systems, J. Theor. Biol. 70(1978) 263–271.
[24] M. van Baalen, V. Krivan, PCJ. van Rijn and MW. Sabelis, Alternative food, switching predators and the persistence of predator–prey systems, Amer. Natur.157(5)(2001) 512–524.
[25] E. van Leeuwen, A. Brannstrom, VAA. Jansen, U. Dieckmann and AG. Rossberg, A generalized functional response for predators that switch between multiple prey species, J. Theor. Biol. 328(2013) 89–98.
[26] DF. Waterhouse and KR. Norris, Biological control: Pacific prospects, Inkata Press, Melbourne, Australia,1987.
[27] E. Were, GV. Nakato, W. Ocimati, I. Ramathan, S. Olal and F. Beed, The banana weevil, Cosmopolites Sordidus, (Germar), is a potential vector of Xanthomonas Campestris. pv. musacearum in bananas, Canadian. J. Plant Pathol. 17(4)(2015).
Volume 13, Issue 1
March 2022
Pages 937-954
  • Receive Date: 31 March 2020
  • Accept Date: 08 September 2021