[1] A. Bahyrycz, K. Ciepli´nski and J. Olko, On Hyers-Ulam stability of two functional equations in non-Archimedean spaces, J. Fixed Point Theory Appl. 18 (2016) 433–444.
[2] A. Bodaghi, Functional inequalities for generalized multi-quadratic mappings, J. Inequal. Appl. 2021 (2021) Paper No. 145.
[3] A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, J. Intel. Fuzzy Syst. 30 (2016) 2309–2317.
[4] A. Bodaghi, Stability of a quartic functional equation, Sci. World J. 2014 Art. ID 752146, 9 pages.
[5] A. Bodaghi, C. Park and O. T. Mewomo, Multiquartic functional equations, Adv. Diff. Equa. 2019 (2019) Paper No. 312.
[6] A. Bodaghi, C. Park and S. Yun, Almost multi-quadratic mappings in non-Archimedean spaces, AIMS Math. 5(5) (2020) 5230–5239.
[7] A. Bodaghi, S. Salimi and G. Abbasi, Characterization and stability of multi-quadratic functional equations in non-Archimedean spaces, Ann. Uni. Craiova-Math. Comp. Sci. Ser. 48(1) (2021) 88–97.
[8] A. Bodaghi and B. Shojaee, On an equation characterizing multi-cubic mappings and its stability and hyperstability, Fixed Point Theory 22(1) (2021) 83–92.
[9] J. Brzd¸ek and K. Ciepli´nski, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Anal. 74 (2011) 6861–6867.
[10] K. Ciepli´nski, Ulam stability of functional equations in 2-Banach spaces via the fixed point method, J. Fixed Point Theory Appl. 23 (2021) Paper No. 33.
[11] K. Ciepli´nski, On the generalized Hyers-Ulam stability of multi-quadratic mappings, Comput. Math. Appl. 62 (2011) 3418–3426.
[12] K. Ciepli´nski, Generalized stability of multi-additive mappings, Appl. Math. Lett. 23 (2010) 1291–1294.
[13] M. Dashti and H. Khodaei, Stability of generalized multi-quadratic mappings in Lipschitz spaces, Results Math. 74 (2019) Paper No. 163.
[14] N. Ebrahimi Hoseinzadeh, A. Bodaghi and M.R. Mardanbeigi, Almost multi-cubic mappings and a fixed point application, Sahand Commun. Math. Anal. 17(3) (2020) 131–143.
[15] M.B. Ghaemi, M. Majani and M.E. Gordji, General system of cubic functional equations in non-Archimedean spaces, Tamsui Oxford J. Inf. Math. Sci. 28(4) (2012) 407–423.
[16] K. Hensel, Uber eine neue Begrndung der Theorie der algebraischen Zahlen, Jahresber, Deutsche MathematikerVereinigung. 6 (1897) 83–88.
[17] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941) 222–224.
[18] K.W. Jun and H.M. Kim, On the Hyers-Ulam-Rassias stability of a general cubic functional equation, Math. Inequ. Appl. 6(2) (2003) 289–302.
[19] K.W. Jun and H.M. Kim, The generalized Hyers-Ulam-Russias stability of a cubic functional equation, J. Math. Anal. Appl. 274(2) (2002) 267–278.
[20] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Mathematics and its Applications, vol. 427, Kluwer Academic Publishers, Dordrecht, 1997.
[21] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality, Birkhauser Verlag, Basel, 2009.
[22] Y. Lee and S. Chung, Stability of quartic functional equations in the spaces of generalized functions, Adv. Diff. Equ. 2009 (2009) Art. ID. 838347.
[23] S. Lee, S. Im and I. Hwang, Quartic functional equations, J. Math. Anal. Appl. 307 (2005) 387–394.
[24] C.-G. Park, Multi-quadratic mappings in Banach spaces, Proc. Amer. Math. Soc. 131 (2002) 2501–2504.
[25] C. Park and A. Bodaghi, Two multi-cubic functional equations and some results on the stability in modular spaces, J. Inequ. Appl. 2020 (2020), Paper No. 6.
[26] C. Park, A. Bodaghi and T.-Z. Xu, On an equation characterizing multi-Jensen-quartic mappings and its stability, J. Math. Inequa. 15(1) (2021) 333–347.
[27] J.M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Matematicki Series III. 34(2) (1999) 243–252.
[28] J.M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glasnik Matematicki. Serija III. 36(1) (2001) 63–72.
[29] S. Salimi and A. Bodaghi, A fixed point application for the stability and hyperstability of multi-Jensen-quadratic mappings, J. Fixed Point Theory Appl. 22 (2020) Paper No. 9.
[30] S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.
[31] T.-Z. Xu, Stability of multi-Jensen mappings in non-Archimedean normed spaces, J. Math. Phys. 53 (2012) Art. ID. 023507.
[32] T.-Z. Xu, Ch. Wang and Th. M. Rassias, On the stability of multi-additive mappings in non-Archimedean normed spaces. J. Comput. Anal. Appl. 18 (2015), 1102–1110.
[33] X. Zhao, X. Yang and C.-T. Pang, Solution and stability of the multiquadratic functional equation, Abstr. Appl. Anal. 2013 (2013), Art. ID 415053, 8 pp.