[1] M. A. Al-Jawary, M. I. Adwan and G. H. Radhi, Three iterative methods for solving second order nonlinear ODEs arising in physics, J. King Saud Univ. Sci., 32 (2020) 312–323.
[2] S. Cuneyt, Numerical methods interpolation, Mech. Eng. Department Middle East Technical University Ankara, Turkey, 2004.
[3] P.J. Davis, Interpolation and approximation, Second edition, Dover, New York, NY, 1975.
[4] I.N. Din, Using Newton’s interpolation and Aitken’s method for solving first order differential equation, World Appl. Sci. J., 38 (2020) 191-194.
[5] C.K. Faith, Solution of first-order differential equation using numerical Newton’s interpolation and Lagrange method, Int. J. Dev. Res. , 8 (2018) 18973-18976.
[6] H. Fatoorehchi, and H. Abolghasemi, Series solution of nonlinear differential equations by a novel extension of the Laplace transform method, Int. J. Comput. Math., 93 (2016) 1299-1319.
[7] E. Isaacson and H.B. Keller, Numerical Analysis and numerical methods, Second edition, PWS-KENT Publishing NY, 1994.
[8] M. E. Islama and M. A. Akbarb, Stable wave solutions to the Landau-Ginzburg-Higgs equation and the modified equal width wave equation using the IBSEF method, Arab J. Basic Appl. Sci., 27 (2020) 270–278.
[9] S. R. Mahmoud and M. Shehu, Solving nonlinear ordinary differential equations using the NDM, J. Appl. Anal. Comput. , 5 (2015), 77-88.
[10] JP.C. Mbagwu, B. I. Madububa and J. I. Nwamba, Series solution of nonlinear ordinary differential equations using single Laplace transform method in mathematical physics, World Scientific News, 154 (2021) 152-174.
[11] S. Mesbahi, Existence result of solutions for a class of nonlinear differential system, Int. J. Nonlinear Anal. Appl., 12 (2021) 1-10.
[12] L. B. Richard and J. D. Faires, Numerical Analysis, PWS-KENT Publishing Company, Boston, 1989.
[13] J. Stoer and R. Burlisch, Introduction to numerical analysis, Second edition, Springer-Verlag, New York, NY, 1993.
[14] H. Temimi and A. R. Ansari, A new iterative technique for solving nonlinear second order multi-point boundary value problems, Appl. Math. Comput., 218 (2011) 1457–1466.
[15] O. Tun¸c, C. Tun¸c, On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order, J. Adv. Res., 7 165-168, https://doi.org/10.1016/j.jare.2015.04.005(1) (2016).
[16] O. Tun¸c, C. Tun¸c, A note on certain qualitative properties of a second order linear differential system, Appl. Math. Inf. Sci., 9(2) (2015) 953-956,https://doi.org/10.12785/amis/090245.
[17] O. Tun¸c, C. Tun¸c, On the asymptotic stability of solutions of stochastic differential delay equations of second order, J. Taibah Univ. Sci., 13(1) (2019) 875–882,https://doi.org/10.1080/16583655.2019.1652453.