[1] L. Abolnikov and J.H. Dshalalow, On a multilevel controlled bulk queuing system MX/Gr, R/11, J. Appl. Math. Stoch. Anal. 3 (1992) 237–260.
[2] K.R. Balachandran, Control policies for a single server system, Manag. Sci. 9 (1973) 1013–1018.[3] J.J. Buckley, Elementary queuing theory based on possibility theory, Fuzzy Set Syst. 37 (1990) 43–52.
[4] M.L. Chaudhry and J.G.C. Templeton, A First Course in Bulk Queues, John Wiley & Sons, New York, 1983.
[5] S.P. Chen, Parametric Nonlinear Programming Approach to Fuzzy Queues with Bulk Service, European J. Operat. Res. 163 (2005) 434–444.
[6] S. Chen, A bulk arrival queuing model with fuzzy parameters and varying batch sizes, Appl. Math. Model. 9 (2006) 920–929.
[7] S.P Chen, Measuring performances of multiple-channel queuing systems with imprecise data: a membership function approach, J. Operat. Res. Soc.,59 (2008) 381-387.
[8] S. Ghimire, R.P. Ghimire, and G.B. Thapa, Mathematical models of Mb/M/1 bulk arrival queuing system, J. Instit. Engin. 10 (2014) 184–191.
[9] G. Choudhury, A batch arrival queue with a vacation time under a single vacation policy, Comput. Operat. Res. 29 (2002) 1941–1955.
[10] G. Choudhury, An MX/G/1 queuing system with a setup period and a vacation period, Queuing Syst. 36 (2000) 23–38.
[11] D. Gross and C.M. Harris, Fundamentals of Queuing Theory, Third Ed., Wiley, New York, 1998.
[12] I.E. Grossmann, Mixed-integer nonlinear programming techniques for the synthesis of engineering systems, Res. Engin. Design, 1 (1990) 205–228.
[13] S. M. Gupta, Interrelationship between Controlling Arrival, and Service in Queuing Systems, Comput. Operat. Res. 22 (1995) 1005–1014.
[14] C. Kao, C. Li and S. Chen, Parametric programming to the analysis of fuzzy queues, Fuzzy Sets Syst. 107 (1999) 93–100.
[15] A. Kaufmann, Introduction to the Theory of Fuzzy Subsets, Academic Press, New York, 1975.
[16] J.C. Ke, Bi-level control for batch arrival queues with an early setup and unreliable server, Appl. Math. Model 28 (2004) 469–485.
[17] J.C. Ke, F.M. Chang, and C.J. Chang controlling arrivals for a Markovian queuing system with a second optional service, Int. J. Indust. Engin. Theory Appl. Pract. 17 (2010) 48–57.
[18] R.F. Khalaf, K.C. Madan, and C.A. Lukas, An M[x]/G/1 queue with Bernoulli schedule general vacation times, general extended vacations, random breakdowns, general delay times for repairs to start and general repair times, J. Math. Res. 3 (2011) 8–20.
[19] V.A. Kumar, A membership function solution approach to fuzzy queue with Erlang service model, Int. J. Math. Sci. Appl. 1 (2011).
[20] C.H. Lin and J.C. Ke, Optimal Operating Policy for a Controllable Queuing Model With a Fuzzy Environment, J. Zhejiang University Sci., 10 (2009) 311-318.
[21] R.J. Li and E.S. Lee, Analysis of fuzzy queues, Comput. Math. Appl. 17 (1989) 1143–1147.
[22] M.K. Mary, J. Rose and T. Gokilavani, Analysis of Mx/M/1/MWV with fuzzy parameters, Int. J. Comput. Appl. 4 (2014).
[23] Z. Mueen, R. Ramli and N. Zura, Parametric nonlinear programming approach with fuzzy queues using hexagonal membership functions, J. Comput. Theor. Nanosci. 14 (2017) 4979-4985.
[24] H. M. Park, T.S. Kim and K.C. Cha, Analysis of a two-phase queuing system with a constant-size batch policy, European J. Operat. Res. 1 (2010) 118–122.
[25] S. Wang and D. Wang, A membership function solution to multiple-server fuzzy queues, Proc. Int. Conf. Serv. Syst. Serv. Manag. 1 (2005).
[26] R.R. Yager, A characterization of the extension principle, Fuzzy Sets Syst. 18 (1986) 205–217.
[27] D. Yang and P. Chang, A parametric programming solution to the F-policy queue with fuzzy parameters, Int. J. Syst. Sci. 46 (2015) 590-598.
[28] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst. 1 (1978) 3–28.
[29] H. J. Zimmermann, Fuzzy Set Theory and Its Applications, Fourth Ed., Kluwer Academic, Boston 2001.