[1] A.A. Aljarrah and A.H. Ali, Human activity recognition using PCA and BiLSTM recurrent neural networks, in Proc. 2nd Int. Conf. Eng. Technol. its Appl. (IICETA), Al-Najef, Iraq, (2019) 156–160.
[2] L. Cantelli, G. Muscato, M. Nunnari and D. Spina, A joint angle estimation method for industrial manipulators using inertial sensors, IEEE/ASME Trans. Mechatron. 20(5) (2015) 2486–2495.
[3] Y. Chen and C. Shen, Performance analysis of smartphone-sensor behavior for human activity recognition, IEEE Access 5 (2017) 3095–3110.
[4] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modelling, arXiv, (2014).
[5] M. Cornacchia, K. Ozcan, Y. Zheng and S. Velipasalar, A survey on activity detection and classification using wearable sensors, IEEE Sensors J. 17(2) (2017) 386–403.
[6] N. Davies, D.P. Siewiorek and R. Sukthankar, Activity-based computing, IEEE Pervas. Comput. 7(2) (2008) 58–61.
[7] N.B. Gaikwad, V. Tiwari, A. Keskar and N.C. Shivaprakash, Efficient FPGA implementation of multilayer perceptron for real-time human activity classification, IEEE Access, 7(2019) 26696–26706.
[8] K. Greff, R.K. Srivastava, J. Koutn´ık, B.R. Steunebrink and J. Schmidhuber, Lstm: A search space odyssey, arXiv, (2015).
[9] I.C. Gyllensten and A.G. Bonomi, Identifying types of physical activity with a single accelerometer: Evaluating laboratory-trained algorithms in daily life, IEEE Trans. Biomed. Eng. 58(9) (2011) 2656–2663.
[10] Y.-L. Hsu, J.-S. Wang and C.-W. Chang, A wearable inertial pedestrian navigation system with quaternion-based extended Kalman filter for pedestrian localization, IEEE Sensors J. 17(10) (2017) 3193–3206.
[11] A. Jain and V. Kanhangad, Human activity classification in smartphones using accelerometer and gyroscope sensors, IEEE Sensors J. 18(3) (2018) 1169–1177.
[12] M. Janidarmian, A. Roshan Fekr, K. Radecka and Z. Zilic, A comprehensive analysis on wearable acceleration sensors in human activity recognition, Sensors, 17(3) (2017) 529.
[13] E. Kantoch, Human activity recognition for physical rehabilitation using wearable sensors fusion and artificial neural networks, in Proc. Comput. Cardiol. Conf. (CinC), Rennes, France (2017) 1–4.
[14] S. Khalifa, G. Lan, M. Hassan, A. Seneviratne and S.K. Das, HARKE: Human activity recognition from kinetic energy harvesting data in wearable devices, IEEE Trans. Mobile Comput. 17(6) (2018) 1353–1368.
[15] S.-M. Lee, S.M. Yoon and H. Cho, Human activity recognition from accelerometer data using convolutional neural network, in Proc. IEEE Int. Conf. Big Data Smart Comput. (BigComp), Jeju, Island (2017) 131–134.
[16] Y. Liu, L. Nie, L. Liu and D.S. Rosenblum, From action to activity: sensor-based activity recognition, Neurocomputing 181 (2016) 108–115.
[17] M.I.H. Lopez-Nava and M.M. Angelica, Wearable inertial sensors for human motion analysis: a review, IEEE Sensors J. 16(15) (2016).
[18] J. Margarito, R. Helaoui, A.M. Bianchi, F. Sartor and A.G. Bonomi, User-independent recognition of sports activities from a single wrist-worn accelerometer: A template-matching-based approach, IEEE Trans. Biomed. Eng. 63(4) (2016) 788–796.
[19] R. Poppe, Vision-based human motion analysis: An overview, Comput. Vis. Image Understand. 108(1–2) (2007) 4–18.
[20] N. Ravi, N. Dandekar, P. Mysore and M.L. Littman, Activity recognition from accelerometer data, in Proc. AAAI 5 (2005) 1541–1546.
[21] J.-L. Reyes-Ortiz, L. Oneto, A. Ghio, A. Sama, D. Anguita and X. Parra, Human activity recognition on smartphones with awareness of basic activities and postural transitions, in Artificial Neural Networks and Machine Learning-ICANN. Cham, Switzerland: Springer, (2014) 177–184.
[22] M. Schuster and K.K. Paliwal, Bidirectional recurrent neural networks, IEEE Trans Sig. Process, 1997.
[23] M. Seiffert, F. Holstein, R. Schlosser and J. Schiller, Next generation cooperative wearables: Generalized activity assessment computed fully distributed within a wireless body area network, IEEE Access 5 (2017) 16793–16807.
[24] A.S.A. Sukor, A. Zakaria and N.A. Rahim, Activity recognition using accelerometer sensor and machine learning classifiers, in Proc. IEEE 14th Int. Colloq. Signal Process. Appl. (CSPA), Batu Feringghi (2018) 233–238.
[25] N. Tufek and O. Ozkaya, A comparative research on human activity recognition using deep learning, in Proc. 27th Signal Process. Commun. Appl. Conf. (SIU), Sivas, Turkey, Apr. (2019) 1–4.
[26] N. Tufek, M. Yalcin, M. Altintas, F. Kalaoglu, Y. Li and S.K. Bahadir, Human action recognition using deep learning methods on limited sensory data, IEEE Sensors J. 20(6) (2020) 3101–3112.
[27] M. Ueda, H. Negoro, Y. Kurihara and K. Watanabe, Measurement of angular motion in golf swing by a local sensor at the grip end of a golf club, IEEE Trans. Human-Machine Syst. 43(4) (2013) 398–404.
[28] A. Wang, G. Chen, J. Yang, S. Zhao and C.-Y. Chang, A comparative study on human activity recognition using inertial sensors in a smartphone, IEEE Sensors J. 16(11) (2016) 4566–4578.
[29] J.-S.Wang, Y.-L. Hsu and J.-N. Liu, An inertial-measurement-unit-based pen with a trajectory reconstruction algorithm and its applications, IEEE Trans. Ind. Electron. 57(10) (2010) 3508–3521.
[30] K. Xia, J. Huang and H. Wang, LSTM-CNN architecture for human activity recognition, IEEE Access, 8(2020) 56855 56866.
[31] W. Xu, Y. Pang, Y. Yang and Y. Liu, Human activity recognition based on convolutional neural network, in Proc. 24th Int. Conf. Pattern Recognit. (ICPR), Beijing, China, (2018) 165–170.
[32] C.-T. Yen, J.-X. Liao and Y.-K. Huang, Human daily activity recognition performed using wearable inertial sensors combined with deep learning algorithms, IEEE Access 8(2020) 174105–174114.
[33] T. Zebin, P.J. Scully, N. Peek, A.J. Casson and K.B. Ozanyan, Design and implementation of a convolutional neural network on an edge computing smartphone for human activity recognition, IEEE Access 7 (2019) 133509–133520.
[34] H. Zhang, Z. Xiao, J. Wang, F. Li and E. Szczerbicki, A novel IoT-perceptive human activity recognition (HAR) approach using multihead convolutional attention, IEEE Internet Things J. 7(2) (2020) 1072–1080.