[1] J. Li, K. Cheng, S. Wang, F. Morstatter, R.P. Trevino, J. Tang and H. Liu. Feature selection: A data perspective,
ACM Comput. Surv. 50(6) (2017) 1–45.
[2] Y. Seo, Y. Choi, and J. Choi, River stage modeling by combining maximal overlap discrete wavelet transform,
support vector machines and genetic algorithm, Water 9(7) (2017) 525.
[3] J. Tian, G. Liu and J. Liu, Multi-focus image fusion based on edges and focused region extraction, Optik 171
(2018) 611–624.
[4] A. Narimani, M. Akbarzadeh and M. Hamzeh, Evaluation of general health in medical students of AJA University
of Medical Sciences, 2009, (2010) 49-55.
[5] X. Yi, E. Walia and P. Babyn, Generative adversarial network in medical imaging: A review, Medical Image
Anal. 58 (2019) 101552.
[6] H.W. Goo and J.M. Goo, Dual-energy CT: new horizon in medical imaging, Korean J. Radiology 18(4) (2017)
555–569.
[7] S. Chakraborty, S. Chatterjee, A.S. Ashour, K. Mali and N. Dey, Intelligent Computing in Medical Imaging: A
study, Advancements in Applied Metaheuristic Computing, IGI Global, 2018.
[8] B. Meher, S. Agrawal, R. Panda and A. Abraham. A survey on region based image fusion methods, Inf. Fusion
48 (2019) 119–132.
[9] S. Ului¸sik, F. Yildiz and A.T. Ozdem ¨ ˙Ir. Image processing based machine vision system for tomato volume estimation, 2018 Electric Elect. Compu. Sci. Biomed. Engin. Meeting (EBBT). IEEE, 2018.
[10] L. Sajn and M. Kukar, ˇ Image processing and machine learning for fully automated probabilistic evaluation of
medical images, Comput. Meth. Prog. Biomed. 104(3) (2011) 75–86.
[11] W. Yin, W. Zhao, D. You and D. Wang, Local binary pattern metric-based multi-focus image fusion, Optics Laser
Tech. 110 (2019) 62–68.
[12] Y. Lakrissi, A. Saaidi and A. Essahlaoui, Novel dynamic color image watermarking based on DWT-SVD and the
human visual system, Multimedia Tools Appl. 77(11) (2018) 13531–13555.
[13] E. Daniel, J. Anitha, K.K. Kamaleshwaran and I. Rani, Optimum spectrum mask based medical image fusion
using Gray Wolf Optimization, Biomed. Signal Proces. Cont. 34 (2017) 36–43.
[14] S. Rein, and M. Reisslein, Performance evaluation of the fractional wavelet filter: A low-memory image wavelet
transform for multimedia sensor networks, Ad Hoc Networks 9(4) (2011) 482–496.
[15] M. Manchanda and R. Sharma, An improved multimodal medical image fusion algorithm based on fuzzy transform,
J. Visual Commun. Image Repres. 51 (2018) 76–94.
[16] M.M.H. Chowdhury and A. Khatun, Image compression using discrete wavelet transform, Int. J. Comput. Sci.
Iss. 9(4) (2012) 327.
[17] K. Joshi, M. Kirola, S. Chaudhary, M. Diwakar and N.K. Joshi, Multi-focus image fusion using discrete wavelet
transform method, Int. Conf. Adv. Engin. Sci. Manag. Tech. 2019, Uttaranchal University, Dehradun, India. 2019.
[18] J. Du, W. Li, K. Lu and B. Xiao, An overview of multi-modal medical image fusion. Neurocomputing 215 (2016):
3-20.
[19] R.R. Nair and T. Singh, Multi-sensor medical image fusion using pyramid-based DWT: a multi-resolution approach. IET Image Proces. 13(9) (2019) 1447–1459.
[20] V. Bhateja, H. Patel, A. Krishn, A. Sahu and A. Lay-Ekuakille, Multimodal medical image sensor fusion framework
using cascade of wavelet and contourlet transform domains. IEEE Sensors J. 15(12) (2015) 6783–6790.
[21] R.X. Gao and R. Yan, From Fourier Transform to Wavelet Transform: A Historical Perspective, Springer, Boston,
MA, 2011.[22] J. Majak, B.S. Shvartsman, M. Kirs, M. Pohlak and H. Herranen, Convergence theorem for the Haar wavelet
based discretization method, Composite Struc. 126 (2015) 227–232.
[23] J.E. Chen and G.H. Glover, Functional magnetic resonance imaging methods, Neuropsych. Rev. 25(3) (2015)
289–313.
[24] X. Xu, Y. Wang and S. Chen, Medical image fusion using discrete fractional wavelet transform, Biomed. Signal
Proces. Cont. 27 (2016) 103–111.
[25] X. Xu, D. Shan, G. Wang and X. Jiang, Multimodal medical image fusion using PCNN optimized by the QPSO
algorithm, Appl. Soft Comput. 46 (2016) 588–595.
[26] F.B. Ozsoydan, Effects of dominant wolves in grey wolf optimization algorithm, Appl. Soft Comput. 83 (2019)
105658.
[27] P. Niu, S. Niu and L. Chang, The defect of the Grey Wolf optimization algorithm and its verification method,
Knowledge-Based Syst. 171 (2019) 37–43.
[28] R. Gharbia, A.E. Hassanien, A.H. El-Baz, M. Elhoseny and M. Gunasekaran, Multi-spectral and panchromatic
image fusion approach using stationary wavelet transform and swarm flower pollination optimization for remote
sensing applications, Future Gen. Comput. Syst. 88 (2018) 501–511.
[29] A. Wunnava, M. K. Naik, R. Panda, B. Jena and A. Abraham, A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer, Engin. Appl. Artif. Intell. 94 (2020) 103–136.
[30] A. Faramarzi, M. Heidarinejad, B. Stephens and S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm, Knowledge-Based Syst. 191 (2020) 105–120.