[1] I.H. Abdel-Halim Hassan, Differential transformation technique for solving higher-order initial value problems, Appl. Math. Comput. 154 (2004) 299–311.
[2] A. Arikoglu and I. Ozkol, Solution of boundary value problems for integro-differential equations by using differential transform method Appl. Math. Comput. 168 (2005) 1145–1158.
[3] N. Bildik, A. Konuralp, F. Bek and S. Kucukarslan, Solution of different type of the partial differential equation by differential transform method and Adomian’s decomposition method, Appl. Math. Comput. 127 (2006) 551–567.
[4] C.K. Chen and S.H. Ho, Application of differential transformation to eigenvalue problems, Appl. Math. Comput. 79 (1996) 173–188.
[5] H.T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover, New York, 1962.
[6] F. Ayaz, Application of differential transform method to differential-algebraic equations, Appl. Math. Comput. 152 (2004) 649–657.
[7] M.A. Fariborzi Araghi and Gh. Kazemi Gelian, Numerical solution of integro differential equations based on double exponential transformation in the sinc-collocation method, App. Math. and Comp. Intel. 1 (2012) 48–55.
[8] M.A. Fariborzi Araghi and Gh. Kazemi Gelian, Numerical solution of nonlinear Hammerstein integral equations via Sinc collocation method based on double exponential transformation, Math. Sci. 30 (2013).
[9] M.A. Fariborzi Araghi and Gh. Kazemi Gelian, Solving fuzzy Fredholm linear integral equations using Sinc method and double exponential transformation, Soft Comput. 19(4) (2015) 1063–1070.
[10] R. Ghoochani-Shirvan, J. Saberi-Nadjafi and M. Gachpazan, An analytical and approximate solution for nonlinear Volterra partial integro-differential equations with a weakly singular kernel using the fractional differential transform method, Int. J. Diff. Equ. 2018 (2018).
[11] S. Haber, Two formulas for numerical indefinite integration, Math. Comp. 60 (1993) 279–296.
[12] M. Hadizadeh and Gh. Kazemi Gelian, Error estimate in the Sinc collocation method for Volterra-Feredholm integral equations based on DE transformations, ETNA 30 (2008) 75–87.
[13] I.H. Hassan, Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems Chaos Solitons Fract. 36(1) (2008) 53–65.
[14] Gh. Kazemi Gelian and M. A. Fariborzi Araghi, Numerical solution of the Burgers’ equation based on Sinc method, Theory Approx. Appl. 13(1) (2019) 27–42.
[15] H. Liu and Y. Song, Differential transform method applied to high index differential-algebraic equations, Appl. Math. Comput. 184 (2) (2007) 748–753.
[16] J. Lund and k. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, 1992.[17] M. Mori and M. Sugihara, The double exponential transformation in numerical analysis, J. Comput. Appl. Math.127 (2001) 287–296.
[18] M. Muhammad, A. Nurmuhammad, M. Mori and M. Sugihara, Numerical solution of integral equations by means of the Sinc colocation based on the double exponential transformation, J. Comput. Appl. Math. 177(2) (2005) 269–286.
[19] M. Muhammad and M. Mori, Double exponential formulas for numerical indefinite integration, J. Comput. Appl. Math. 161 (2003) 431–448.
[20] A. Nurmuhammad, M. Muhammad and M. Mori, Double exponential transformation in the Sinc collocation method for a boundary value problem, J. Comput. Appl. Math. Appl. 38 (1999) 1–8.
[21] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer, 1993.
[22] M. Sugihara, Optimality of the double exponential formula - functional analysis approach, Numer. Math. 75 (1997) 379–395.
[23] M. Sugihara and T. Matsuo, Recent development of the Sinc numerical methods, J. Comput. Appl. Math. 164 (2004) 673–689.
[24] H. Takahasi and M. Mori, Double exponential formulas for numerical integration, Publ. Res. Inst. Math. Sci. 9 (1974) 721–741.
[25] J. K. Zhou, Differential Transformation and its Application for Electrical Circuits, Huarjung University Press, Wuhan, China, 1986.