[1] S.K. Abraheem, N.J.F. Al-Obedy and A.A. Mohammed, A comparative study on the double prior for reliability Kumaraswamy distribution with numerical solution, Baghdad Sci. J. 17(1) (2020) 159–165.
[2] A.K. Akbar, A. Mohammed, H. Zawar and T. Muhammad, Comparison of loss functions, for estimating the scale parameter of log-normal distribution using non-informative prior, Hacettepe J. Math. Stat. 45(6) (2016) 1831–1845.
[3] N.H. AL-NOOR and S.k. Ibraheem, On the maximum likelihood, Bayes and Empirical Bayes Estimation for the shape parameter, reliability and failure rate functions of Kumaraswamy distribution, Global J. Bio-Sci. Biotech. 5(1) (2016) 128–134.
[4] N.J.F. Al-Obedy, A.A. Mohammed and S.K. Abraheem, Numerical methods on the triple informative prior distribution for the failure rate basic Gompertz model, J. Univ. Anbar Pure Sci. 14(2) (2020) 88–94.
[5] S. S. AL Wan, Non-Bayes, Bayes and Empirical Bayes Estimator for Lomax Distribution, A Thesis Submitted to the Council of the College of Science at the AL-Mustansiriya University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mathematics, 2015.
[6] R. A. Bantan, F. Jamal, C. Chesneau and M. Elgrahy, Truncate inverted Kumaraswamy generated family of distributions with applications, Entropy 21(11) (2019) 1089.
[7] R. L. Burden and J. D. Faires, Numerical Analysis, Ninth Edition, Cengage Learning. Inc., Wadsworth Group, 2011.
[8] M. H. DeGroot, Optimal Statistical Decision, John Wiley & Sons, 2005.
[9] Y. Dodge, The Concise Encyclopedia of Statistics, Springer Science + Business Media, LLC., 2008.
[10] J. F. Epperson, Numerical Methods and Analysis, Second Edition, John Wiley and Sons, Inc. All Rights Reserved, 2013.
[11] R. Gholizadeh, A.M. Shirazi and S. Mosalmanzadeh, Classical and Bayesian estimation on the Kumaraswamy distribution using grouped and ungrouped data under difference loss functions, J. Appl. Sci. 11(12) (2011) 2154–2162.
[12] I. Ghosh, Bivariate and multivariate weighted Kumaraswamy distribution theory and applications, J. Stat. Theory Appl. 18(3) (2019) 198.
[13] W. Gautschi, Numerical Analysis, Second Edition, Springer Science+ Business Media, 2012.[14] A. Haq and M. Aslam, On the double prior selection for the parameter of Poisson distribution, Int. Stat. Statistics on the Internet, 2009 (November)
http://Interstat.Statjounal.net
[15] A.F.M.S. Islam, M.K. Roy and M.M. Ali, A non-linear exponential (NLINEX) loss function in Bayesian analysis, J. Korean Data Inf. Sci. Soc. 15(4) (2004) 899–910.
[16] P. Kumaraswamy, Sinepower probability density function, J. Hydrol. 31 (1976) 181-184.
[17] P. Kumaraswamy, Extended sine power probability density function, J. Hydrol. 37 (1978) 81–89.
[18] S. F. Mohmmad and R. Batul, Bayesian estimation of shift point in shape parameter of inverse Gaussian distribution under different loss function, J. Optim. Indust. Engin. 18 (2015) 1–12.
[19] K.C. Patel and J.M. Patel, Analogical study of Newton-Raphson method & false position method, Int. J. Creative Res. Though. 8 (2020) 3508–3511.
[20] R.M. Patel and A.C. Patel, The double Prior selection for the parameter of exponential lifetime model under type II censoring, J. Modern Appl. Stat. Meth. 16(1) (2017) 406–427.
[21] S. Raja and S. P. Ahmad, Bayesian analysis of power function distribution under double Priors, J. Appl. Stat. 3(2) (2014) 239–249.
[22] M. Ronak, The double prior selection for the parameter of exponential lifetime model under type II censoring, JMASM 16(1) (2017) 406–427.
[23] A.F.M. Saiful Islam, Loss Functions, Utility Functions and Bayesian Sample Size Determination, A Thesis is Submitted for the Degree of Doctor of Philosophy in Queen Mary, University of London, 2011.
[24] S.G. Salman, Estimating the Parameter of Maxwell-Boltzman Distribution by Many Methods Employing Simulation, A Thesis Submitted to the Council of College Science for Women University of Baghdad as a Partial Fulfillment of the Requirements for the Degree of Master of Science in Mathematics, 2017.
[25] A.K. Singh, R. Dalpatadu and A. Tsang, On estimation of parameters of the Pareto distribution, Actuarial Res. Clearing House 1 (1996) 407–409.
[26] S. V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction, Second Edition, John Wiley and Sons Ltd., 2000.