[1] M. A. Abdlhusein, New Approach in Graph Domination, PhD Thesis, University of Baghdad, Iraq, 2020.
[2] M. A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Math. Algor. Appl. 13 (2) (2021) 2150009.
[3] M.A. Abdlhusein, Stability of inverse pitchfork domination, Int. J. Nonlinear Anal. Appl. 12(1) (2021) 1009–1016.
[4] M.A. Abdlhusein, Applying the (1,2)-pitchfork domination and its inverse on some special graphs, Bol. Soc.Paran. Mat. accepted to appear, (2021).
[5] M.A. Abdlhusein and M.N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Math. Algor. Appl. 13(4) (2021) 2150038.
[6] M. A. Abdlhusein and M. N. Al-Harere, New parameter of inverse domination in graphs, Indian J. Pure Appl. Math. 52(1) (2021) 281–288.
[7] M. A. Abdlhusein and M. N. Al-Harere, Doubly connected pitchfork domination and its inverse in graphs, TWMS J. App. Eng. Math. accepted to appear, (2021).
[8] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and it’s inverse for corona and join operations in graphs, Proc. Int. Math. Sci. 1(2) (2019) 51–55.
[9] M. A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and its inverse for complement graphs, Proc. Instit. Appl. Math. 9(1) (2020) 13–17.
[10] M.A. Abdlhusein and M.N. Al-Harere, Some modified types of pitchfork domination and its inverse, Bol. Soc. Paran. Mat. accepted to appear, (2021).
[11] Z. H. Abdulhasan and M. A. Abdlhusein, Triple effect domination in graphs, AIP Conf. Proc. accepted to appear, (2021).
[12] Z.H. Abdulhasan and M.A. Abdlhusein, An inverse triple effect domination in graphs, Int. J. Nonlinear Anal. Appl. 12(2) (2021) 913–919.
[13] K.Sh. Al’Dzhabr, A.A. Omran and M.N. Al-Harere, DG-domination topology in digraph, J. Prime Res. Math. 17(2) (2021), 93-100
[14] M. N. Al-Harere and M. A. Abdlhusein, Pitchfork domination in graphs, Discrete Math. Algor. Appl. 12(2) (2020) 2050025.
[15] L. K. Alzaki, M. A. Abdlhusein and A. K. Yousif, Stability of (1,2)-total pitchfork domination, Int. J. Nonlinear Anal. Appl. 12(2) (2021) 265–274.
[16] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[17] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[18] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs — Advanced Topics, Marcel Dekker Inc., 1998.
[19] T.W. Haynes, M. A. Henning and P. Zhang, A survey of stratified domination in graphs, Discrete Math. 309 (2009) 5806–5819[20] A.A. Jabor and A.A. Omran, Topological domination in graph theory, AIP Conf. Proc. 2334 (2021) 020010.
[21] S.S. Kahat and M.N. Al-Harere, Inverse equality co-neighborhood domination of graphs, J. Phys. Conf. Ser. 1879 (2021) 032036.
[22] S.S. Kahat, A.A. Omran and M.N. Al-Harere, Fuzzy equality co-neighborhood domination of graphs, Int. J. Nonlinear Anal. Appl. 12(2) (2021) 537–545.
[23] A. Khodkar, B. Samadi and H. R. Golmohammadi, (k,k,´k´´)-Domination in graphs, J. Combin. Math. Combin. Comput. 98 (2016) 343–349.
[24] C. Natarajan, S. K. Ayyaswamy and G. Sathiamoorthy, A note on hop domination number of some special families of graphs, Int. J. Pure Appl. Math. 119(12) (2018) 14165–14171.
[25] A.A. Omran and T.A. Ibrahim, Fuzzy co-even domination of strong fuzzy graphs, Int. J. Nonlinear Anal. Appl. 12(1) (2021) 727–734.
[26] O. Ore, Theory of Graphs, American Mathematical Society, Providence, RI, 1962.
[27] M.S. Rahman, Basic Graph Theory, Springer, India, 2017.
[28] S.J. Radhi, M.A. Abdlhusein and A.E. Hashoosh, The arrow domination in graphs, Int. J. Nonlinear Anal. Appl. 12(1) (2021) 473–480.
[29] M. M. Shalaan and A.A. Omran, Co-even domination number in some graphs, IOP Conf. Ser. Mater. Sci. Eng. 928 (2020) 042015.
[30] S.H. Talib, A.A. Omran and Y. Rajihy, Inverse frame domination in graphs, IOP Conf. Ser. Mater. Sci. Eng. 928 (2020) 042024.
[31] H.J. Yousif and A.A. Omran, The split anti fuzzy domination in anti fuzzy graphs, J. Phys. Conf. Ser. (2020) 1591012054.