[1] L. Allen, M. Jones and C. Martin, A discrete-time model with vaccination for a measles epidemic, Math. Biosci. 105(1) (1991) 111–131.
[2] A. Ara, N.A. Khan, O. A. Razzaq, T. Hameed and M.A.Z. Raja, Wavelets optimization method for evaluation of fractional partial differential equations: an application to financial modelling, Adv. Diff. Equ. 2018(1) (2018) 8.
[3] J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer, Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems IEEE Trans. Evol. Comput. 10(6) (2006) 646–657.
[4] C.A.C. Coello and E.M. Montes Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Adv. Eng. Inf. 16(3) (2002) 193–203.
[5] K. Ejima, R. Omori, K. Aihara and H. Nishiura, Real-time investigation of measles epidemics with estimate of vaccine efficacy, Int. J. Biol. 8(5) (2012) 620.
[6] M. Farman, M.F. Tabassum, M. Saeed and N.A. Chaudhry, Control and simulation impact on nonlinear HepatitisB model by using Pad´e-approximation based differential evolution, (2019), bioRxiv: 831636.
[7] B. Grenfell, Chance and chaos in measles dynamics, J. R. Stat. Soc. Ser. B Stat. Meth. 54(2) (1992) 383–398.
[8] Z. Kalateh Bojdi, S. Ahmadi-Asl and A. Aminataei, A new extended Pad´e-approximation and its application, Adv. Numerical Anal. 2013 (2013).
[9] S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh, D. Baleanu and M. Salimi, An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets, J. Math. 8(4) (2020)558.
[10] S. Kumar, R. Kumar, C. Cattani and B. Samet, Chaotic behaviour of fractional predator-prey dynamical system, Chaos, Solitons and Fractals 135 (2020) 109811.
[11] S. Kumar, A. Kumar, Z. Odibat, M. Aldhaifallah and K.S. Nisar, comparison study of two modified analytical approach for the solution of nonlinear fractional shallow water equations in fluid flow, AIMS Math. 5(4) (2020) 3035–3055.
[12] N. Panagant and S. Bureerat Solving partial differential equations using a new differential evolution algorithm Math. Probl. Eng. 2014 (2014).
[13] K. Price, R.M. Storn and J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Springer Science Business Media, 2006.
[14] J. Ochoche and R. Gweryina A mathematical model of measles with vaccination and two phases of infectiousness, IOSR J. Math. 10(1) (2014) 95–105.
[15] M. Roberts and M. Tobias Predicting and preventing measles epidemics in New Zealand: application of a mathematical model, Epidem. Infect. 124(2) (2000) 279–287.
[16] E. Simons, M. Ferrari, J. Fricks, K. Wannemuehler, A. Anand, A. Burton and P. Strebel, Assessment of the 2010 global measles mortality reduction goal: results from a model of surveillance data, The Lancet. 379(9832) (2012) 2173–2178.
[17] M.F. Tabassum, S. Akram, S. Mahmood-ul-Hassan, R. Karim, P.A. Naik, M. Farman and M. H. Ahmad, Differential gradient evolution plus algorithm for constraint optimization problems: A hybrid approach, Int. J. Optim. Control Theory Appl. 11(2) (2021) 158–177.
[18] M.F. Tabassum, M. Farman, P.A. Naik, A. Ahmad, A.S. Ahmad and H. Saadia, Modeling and simulation of glucose-insulin glucagon algorithm for artificial pancreas to control the diabetes mellitus, Network Model. Anal. Health Inf. Bioinf. 10(1) (2021) 1–8.
[19] M.F. Tabassum, M. Saeed, N. Ahmad, A. Sana and N. Riaz, Solution of war planning problem using derivative-free methods, Sci. Int. 27(1) (2015) 395–398.
[20] M.F. Tabassum, M. Saeed, A. Akg¨ul, M. Farman and S. Akram, Solution of chemical dynamic optimization systems using novel differential gradient evolution algorithm, Phys. Scr. 96(3) (2021) 035212.
[21] M.F. Tabassum, M. Saeed, A. Akg¨ul, M. Farman and N.A. Chaudhry, Treatment of HIV/AIDS epidemic model with vertical transmission by using evolutionary Pad´e-approximation, Chaos Solitons Fractals 134 (2020) 109686.
[22] M. Tabassum, M. Saeed, N.A. Chaudary, J. Ali and A. Sana, Integrated approach of set theory and pattern search methods for solving aircraft attacking problem, Pak. J. Sci. 69(1) (2017) 136–143.
[23] M.F. Tabassum, M. Saeed, N.A. Chaudhry and S. Akram, Treatment of non-linear epidemiological smoking model using evolutionary Pad´e-approximation: Treatment of non-linear smoking model using EPA, Proc. Pakistan Acad. Sci. 57(2) (2020) 11–19.
[24] M. F. Tabassum, M. Saeed, N.A. Chaudhry, J. Ali and M. Farman, S. Akram, Evolutionary simplex adaptive Hooke-Jeeves algorithm for economic load dispatch problem considering valve point loading effects, Ain Shams Eng. J. 12(1) (2021) 1001–1015.
[25] M.F. Tabassum, M. Saeed, N. Chaudhry, A. Sana and Z. Zafar, Optimal design of oxygen production system by pattern search methods, Pak. J. Sci. 67(4) (2015) 371–376.
[26] M.F. Tabassum, M. Saeed, A. Sana and N. Ahmad, Solution of 7 bar tress model using derivative-free methods Proc. Pakistan Acad. Sci. 52(3) (2015) 265–271.
[27] M. Vajta, Some remarks on Pad´e-approximations, Proc. 3rd TEMPUS-INTCOM Symposium, 2000.
[28] World Health Organization, Global measles and rubella strategic plan, 2012.